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Abstract

An asymptotic approach, based on the method of multiple scales, is employed to construct the nonlinear normal
modes (NNM’s) of self-adjoint structural systems with arbitrary linear inertia and elastic stiffness operators, general
cubic inertia and geometric nonlinearities. The methodology employed for constructing the approximate invariant
manifolds of individual NNM’s—away from internal resonances—and of the resonant modes—near three-to-one
internal resonances—attempts to generalize previous studies based on asymptotic techniques. The theory is applied to a
hinged-hinged uniform elastic beam carrying a lumped mass and undergoing axis stretching. Depending on the lumped
mass relative to the beam mass and on its position along the span, different classes of nonlinear normal modes and their
stability are investigated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of normal modes of vibration is well established for linear oscillatory systems. The linear
normal modes, defined as eigenvectors (eigenfunctions) of the governing linear differential (partial-differ-
ential) problem, remarkably lead to the expansion theorem allowing to express an arbitrary response as a
superposition of modal contributions. Another distinguished modal property, the invariance, often allows
for the reduction of the modeled modes.

The idea of extending the concept of normal modes to nonlinear systems was first proposed by
Rosenberg (1962, 1966) for finite-degree-of-freedom systems. Rand (1974), Rand et al. (1992), Vakakis and
Rand (1992), and Vakakis et al. (1996) have made important contributions to the problem of defining
theoretically and constructing analytically the nonlinear normal modes.
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Shaw and Pierre (1991, 1993) introduced the concept of nonlinear normal modes as low-dimensional
(typically, two-dimensional) invariant-manifolds tangent to the hyperplane spanned by the linear modes in
the phase space. They used a real-valued invariant-manifold approach to construct the nonlinear normal
modes of conservative as well as nonconservative vibratory finite-degree-of-freedom systems away from
internal resonances. The nonlinear mode shapes were determined in a manner similar to center manifold
reduction borrowed from bifurcation theory. Pesheck et al. (2001) extended the invariant-manifold method
also to the case of internal resonances.

Nayfeh and Nayfeh (1994, 1995) used a complex-valued invariant-manifold approach to construct the
nonlinear normal modes of multi-degree-of-freedom systems with quadratic and cubic nonlinearities.
Nayfeh et al. (1996) extended this approach to the cases of one-to-one and three-to-one internal resonances.
A comparison of different approximate methods for constructing the nonlinear normal modes of discrete
systems can be found in Camillacci (2003).

Several methods have also been proposed for weakly nonlinear distributed-parameter systems; they
include the energy method of King and Vakakis (1993, 1996), the method of harmonic balance, treatments
of a discretized version, and direct methods.

With the discretization approach one assumes the solution as an expansion in terms of basis functions
from a complete set and then uses one of the variants of the method of weighted residuals to obtain an
infinite set of ordinary-differential equations. The infinite set of equations is truncated to practically
compute the nonlinear normal modes. Then, the discretized equations are treated with the real-valued or
complex-valued form of the invariant-manifold approach, the energy approach, or an asymptotic method.
King and Vakakis (1996) used the energy approach to compute the nonlinear normal modes of a hinged—
clamped beam in the case of a three-to-one internal resonance between the lowest two modes. They per-
formed a convergence study for various modal truncations and obtained sufficiently accurate solutions by
considering the lowest nine modes. They found either one or three nonlinear modes; using Floquet theory it
was predicted that, at a given detuning, one mode is unstable and the other two modes are stable.

On the other hand, direct analytical techniques, such as the method of harmonic balance or the method
of multiple scales, have also been used to construct the nonlinear normal modes of continuous systems.
These techniques do not require an a priori assumption of the form of the solution. Pak et al. (1992), King
and Vakakis (1993), Shaw and Pierre (1994), Nayfeh (1995), Nayfeh et al. (1999), Lacarbonara et al. (2003),
and Lacarbonara and Rega (2003) used this approach to determine the nonlinear modes of several one-
dimensional spatially continuous systems.

In this paper, an asymptotic approach, based on the method of multiple scales, is employed to construct
the individual as well as the resonant nonlinear normal modes of self-adjoint structures with general
symmetric nonlinearities of the geometric and inertia type. Asymmetric nonlinearities—such as quadratic
nonlinearities—have not been here considered because the reference mechanical systems (e.g., shear-type
building structures) belong to the class of structural systems where the symmetric restoring forces are
dominant. With symmetric and asymmetric nonlinearities, the methodology could be conveniently modified
as done in the general context of distributed-parameter systems discussed in Lacarbonara et al. (2003) and
Lacarbonara and Rega (2003).

In the present work, the achieved outcomes are the invariant physical manifolds associated with the
modes, the mode shapes (nonlinear eigenvectors) and the nonlinear frequency dependence on the vibration
amplitude. With respect to previous studies based on the method of multiple scales (Nayfeh, 1995; Nayfeh
et al., 1999; Lacarbonara et al., 2003; Lacarbonara and Rega, 2003), here the methodology is developed and
discussed in a systematic format including the fundamental steps leading to the nonlinear mode shapes.
These are obtained as an extension of the linear eigenvectors and, more importantly, the extent of the
nonlinear corrections is discussed and interpreted mechanically resorting to the concept of virtual work.

Further, the generated results are system-independent and as such they can be suitably exploited for
nonlinear modal-type analyses of general nonlinear structural systems. In fact, as the normal modes of
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linear systems are conveniently used in modal analyses, the concept of nonlinear normal modes of vibration
suggests the definition of a nonlinear modal analysis (Pesheck et al., 2001) whereby an arbitrary nonlinear
vibratory response of a structural system is obtained in terms of nonlinear modal coordinates. As model
reduction is performed for linear systems, model reduction is also expected to be possibly achieved using the
nonlinear normal coordinates with the goal of employing the least number of nonlinear modes relative to
the number of linear modes needed to achieve a comparable accuracy in modal-type analyses of nonlinear
systems.

The case of a hinged-hinged uniform elastic beam carrying a lumped mass is discussed as an illustrative
example. The closed-form nonlinear modes are either individual, away from internal resonances, or reso-
nant, in the vicinity of three-to-one internal resonances. The differences between the linear normal modes
and their nonlinear companions are discussed. In the case of resonant nonlinear normal modes, the
bifurcation behavior is studied varying the internal detuning parameter.

The paper is organized as follows. In Sections 2-4, the asymptotic approach for generating the nonlinear
normal modes of general structures is presented. Section 5 shows the main results relating to the illustrative
problem; finally, the summary and concluding remarks are presented in Section 6.

2. General self-adjoint structural systems: computational approach

In this section, the asymptotic method of multiple scales is employed to construct the nonlinear normal
modes of multi-degree-of-freedom self-adjoint structures described by the following nondimensional vec-
tor-valued equation of motion:

Mx + Kx + K3 (x, x, X) + M;(x, X, X) + M;(x,x,X) =0 (1)

where M and K are N x N symmetric and positive-definite matrices representing the linear mass and
stiffness operators, respectively; x is the N x 1 vector of the nondimensional generalized coordinates; Ks,
M; and Mj are N x 1 noncommutative and multilinear operators which represent the nonlinear cubic
stiffness (K3) and nonlinear inertia (M3, M), respectively; and the dot denotes differentiation with respect
to the nondimensional time ¢. While the geometric nonlinearities arise from the nonlinear strain—dis-
placement relations, the inertia nonlinearities of the assumed form are typical of inextensible systems. The
dynamic structural model represented by Eq. (1) is supposed to be accurate, kinematically and constitu-
tively, so as to be capable of capturing the physical structural behaviors under investigation also for high
frequencies.

Let B, represent the linear modal tensor such that, introducing the transformation x = Byq, the set of
equations (1) can be rewritten in the modal coordinates g; as

4+ Aq =Gs(q,9,9) + I:(q,4,9) + I5(q,q, 4) (2)
where
W 0
A=BKBy=| : . 3)
0 - o}

and B, has been normalized such that BjMB, = I, with I being the identity tensor and T indicating the
transpose. The assumption that the frequencies are distinct has been made; moreover, G;(q,q,q) =
—BK;(Bq, Boq, Boq): I3(q, 4, 4) = —B;M;(Bog, Bog, Boq): 15(q,q,4) = —B;K;(Bog, Bog, Bod).
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The second-order (in time) set of equations (2) can be conveniently reduced to a first-order system as
follows:

e o @
P+ Aq = Gs(q,q,9) +I:(q,p,p) + 15(q,9, )
Introducing a small dimensionless number € as an ordering device, a third-order expansion of the solutions
of (4) is sought in the form
a=cq,(To, 71, 1) + €,(To, T, 1) + €a5(Ty, Ty, o) + -+

(5)
p=ep (10, 71, 5) + €py(To, 1, ) + €p3(To, 1, Tn) + - -

where T, = ¢ is a fast scale characterizing motions occurring at one of the system natural frequencies oy
and 7; = €1, j = 1,2, are the slow scales. In terms of 7}, the time derivative becomes

d
E=D0+ED1+€2D2+"' (6)
where D; = 0/07T;.

Substituting (5) and (6) into (4) and equating the coefficients of like powers of ¢ yields the following
hierarchy of linear problems:

Order e:
Doq; —p; =0 (7)
Dop, +Aq, =0

Order €%
Dyqy, — p, = —Diq, (8)
Dop, + Aq, = —Dip,

Order €*:
Doq; — p; = —D1q, — Daq,
Dop; + Aqy; = —D1p, — Dop; + G3(q,,9q,,4q;) + Ii(q;,pi,py) + L5(q;,q;, Dop,) )

In the next section, the individual nonlinear normal modes are obtained when the structure is away from
internal resonances and the resulting invariant manifolds are two-dimensional.

3. Individual nonlinear normal modes

Because we are interested in seeking approximations of the kth nonlinear normal mode when this mode

is away from internal resonances with other modes, the general solution of (7) can be expressed as
q, = A(Ty, )" "owy + cc (10)
p, = ia)okAk(Tl, Tz)eiwnkrollk + cc

where u, is the kth eigenvector in the linear modal space (i.e., uy; = dy; with Jy; denoting the Kronecker
delta), wyy is the kth linear frequency, i is the imaginary unit, and cc stands for the complex and conjugate
of the preceding terms.
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Then, substituting (10) into (8) yields
Doq, — p, = —(D1A4;)e Puy + cc (n
D()p2 + qu = —ia)Ok(DlAk)ei”OkTouk + cc

Since the homogeneous problem obtained from (11) admits nontrivial solutions, the solvability of (11) is
enforced requiring the orthogonality between the solution of the following adjoint homogeneous problem

Doq" — Ap" =0

Dop" +q" =0
and the inhomogeneous term of (11), g, = —[1,iwg]" (D14;)e ™ Pou; + cc.
Because the solution of the adjoint homogeneous problem (12) is
* N 100 ; .
|:g*:| — A;‘ |: 10.1 :| eﬂwo,ﬂ)uj + cc (13)
=1

the orthogonality condition is

Tk q*
[ | fan =0 (14

where 7, is the kth period of oscillation. Equation (14) yields D, 4; = 0. This implies that 4; does not depend
on the time scale 7;; consequently, A, = 4;(T>).
Substituting (10) into (9), and accounting for D4, = 0, yields

D0q3 —p; = —(DzAk)ei“OkTouk + cc

Dops + Agy = —iwg (Dad; )€ w4 [3Gs (uy, ug, ue) + g s (we, we, ) — 3, 1 (wy, ug, ue) | g A"
+ [Gs (we, wg, ) — g L (uge, ue, we) — g, 15 (wg, wg wg) [ A7 + e (15)

where 4, stands for the complex and conjugate of 4;.
Imposing again the orthogonality between the solution of the adjoint homogeneous problem and the
inhomogeneous term of (15), the following modulation equation is obtained:

Fige 5~
DyA, = —A;A4 16
20k 21(1)0k KTk ( )
where
T = 30} G (g, ug, wp) + o uf I (ug, wg, up) — 30f,u) T (g, uy, wy) (17)

Substituting (16) into (15), the solution of the resulting equation can be expressed as

i Ty 4274 3iwor Ty 43
q; = zle“o" OAkAk + 25€ 0k OAk + cc (18)

p; = wie A4, + wyetnlo 43 4 cc (19)

Thereafter, substituting (18) and (19) into (15), and equating the coeflicients of exp(iwy7p) and
exp(3iwy Ty) separately to 0, yields

. r
1WoZ; — W) = — 21$k uy (20)
0k

3iw0k22 — Wy = 0 (21)
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. r
10w + Az = —%“k + 3G (ug, u, ue) + kaI3 (g, 0, ) — 3(1)0k1 (g, u, ) (22)

3i(,00kW2 + AZ2 = G3 (llk7 uy, llk) — w(z)kl3 (llk, uy, llk) — a)éklz (llk, uy, llk) (23)

Next, the orthogonality is imposed between the solution of the adjoint homogeneous problem and the
component of the third-order solution (18) and (19) which is proportional to exp(iwg 7). More concisely,
this solvability condition can be written as

[inkuZ llz] |:VZV]1 :| =0 (24)
Substituting Eq. (20) into (24) gives ujz; = '/ (4w?,). Consequently, using Eq. (22) gives
_ T . I =~ )
n=g 5wt Z Cju;, Wi =10 | =275 W+ Z kW (25)
Qor L Dok ZH
where
3ulGs (g, ug, uy) + w2 ulLs(ug, ug, uy) — 3w, ul' L (ug, ug, u
Gy =2 3 (W, e, ) + g T (g, u, ) 0c; 15 (ug, g, ) (26)

2 2
Wp; — Wy

Solving (21) and (23) for z, and w, yields

N N

Z; = E @jkuj7 Wy = 3i(l)()k E @]—kllj (27)
=1 =

where
T 2 LT 2 ST+
. u; Gs (uy, ui, ) — g u; (g, u, ) — wpu; I (ug, ug, uy.)
Jfk = — “ 902 (28)
Wy, Woy

Finally, substituting (25) and (27) into (18) and (19), the solution of the third-order problem takes the
form

I : - a .
q; <4 oy + Z % v, >e“"°kToA§Ak + <Z @jkuj> el g3 4 cc (29)
“ok J=1#k j=1
N
p; = ico()k ( kkzk u; + Z ¢ G kW )eiw("‘T('Alz(Zk + <3i0)0k Z @j/ﬂlj) 6310)0’(7-0142 + cc (30)
J=1j#k Jj=1

Inserting the polar form for 4;, 4,(T3) = (1/2)ar(D>) exp(i¢p(T>)), into (16) and separating real and
imaginary parts yields

Dra; =0, Dy, = — Tyia; (31)

1
Bwo
The first equation expresses the circumstance that the amplitude is constant with respect to the slow scale
T,, whilst integrating the latter furnishes the effect of the nonlinearity on the frequency as

1
O = _%Fkkkaiezt + Do (32)

where ¢, is a constant phase depending on the initial conditions.



W. Lacarbonara, R. Camillacci | International Journal of Solids and Structures 41 (2004) 5565-5594 5571
Substituting (32) into (10), and using the polar form, gives
q; = a; cos(wpt + Py )u; = a; cos Oruy, (33)
where wy is the nonlinear frequency of the kth individual nonlinear normal mode expressed as
W = Wor — “kkkEzai (34)

where o = I/ (8wor) is known as the effective nonlinearity coefficient and regulates the bending of the
backbone of the mode (the curve representing the oscillation frequency versus the amplitude). Substituting
(29), (30) and (33) into (5) leads to

1 N
u + 624 ( kkk Z jkuj>

J=l#k

q = €ax

1 N
cos 0 + eﬁai( > @jkuj) c0s 30 + - -- (35)
=1

1 r N . 3 N .
P = —€woray | Uy + Ezzai < kkk Z jkllj> S Hk — ESCOOkZClz (Z @j/cuj> S 30k 4+ ..
j=lj#k J=1
(36)
Considering that u;; = d;, Eqs. (35) and (36) can be rewritten in scalar form as

_ 1 Dy 2.2 1 33

qr = €ay +1—6—6 a; COSHk-l-ZE (lkgkaOS?)@k-l-"' (37)
1T 3

Pr = —€wgay <1 — E ﬂEZ(Iz) sin Gk — Ze3akw0k9/kk sin 391{ + - (38)

q; =1€a} (€ cos O + Dy cos30,) + -+, j#k (39)

P = —0uie @ (€ sin b + 3%, sin30;) +---, j#k (40)

The two-dimensional invariant manifold associated with the kth individual nonlinear normal mode is found
in modal coordinates once the generalized coordinates g; and p; are expressed in terms of the ‘master’
coordinates ¢; and p;. The manifold takes the form

|

4= [(fg,k +D0)g + (G — 3D ) ‘iﬁi’;] . (41)
1 P3 ’ 2

pi=; (€ — 32, ) o +(Cn +9%u)qipi| + - (42)

To express the manifold in the original physical coordinates instead of the linear modal coordinates, Egs.
(41) and (42) are substituted into the transformations x = Byq and y = Byp. Consequently,

S|
xxagbu+ > 1 |(Gn+ D)4} + (5 — 3,) TEE ""pk by, (43)
A Wi

N 3
1
y = pibor + Z Z{ 'k—3@jk)£—§

+ (€ + 9@%)%&%} by, (44)
J=Lj#k Ok
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where by; is the jth physical linear eigenvector. Letting ¢.(%) = ax and py(#) = 0 into (43) and (44), and
dividing the result by g, so as to ‘normalize’ the shape, the approximate Ath nonlinear mode shape is
obtained in the form

N
1
bk ~ b()k + ai E Z (%jk + @jk)bOj (45)
J=l.j#k

Assuming, for sake of conciseness, geometric nonlinearities only (i.e., I; = I = 0), the closed-form non-
linear mode shape becomes

S B 3 1
b, ~ by, + ai Z [Z (,U(z)j — w(z)k + a)éj T 002 U;G3(llk,llk, llk) b()j (46)

J=Lj#k Ok

Inspection of Eq. (46) allows to ascertain that (i) the individual NNM’s break down when wy; =~ @y (1:1
internal resonance) or wg; =~ 3w (3:1 internal resonance) and (ii) the nonlinear corrections to the kth linear
mode shape depend quadratically on g;—as in the nonlinear frequency w; in Eq. (34). The strength of
the second-order contribution of the jth linear mode is regulated by the participation factor enclosed in the
square brackets in Eq. (46). This coefficient is proportional to 3(wg; — d) "+ (g — 9w2,)”" and to the
virtual work of the nonlinear structural force associated with the Ath mode in the displacement of the jth
mode. On the other hand, the leading nonlinear frequency correction term is proportional to
gt = 3u} Gy (g, ug, uy) /(8w ), which, in turn, is proportional to the virtual work of the nonlinear struc-
tural force associated with the £th mode in the displacement of the £th mode itself.

Inspection of Egs. (43) and (44) allows to draw some general conclusions about the signatures of the
individual NNM’s. We observe that when ¢ = 4 =0, for all j, then Eqgs. (43) and (44) reduce to
X =~ ¢;bo;r and y = p;by;. Since the resulting dependence of the system phase state on the master coordinates
qr and p; is linear, these individual NNM’s belong to the class of similar nonlinear normal modes
(Rosenberg, 1962, 1966).

Considering again, for simplicity, the case of geometric nonlinearities only, the condition for similar
normal modes, i.e., € = Z; = 0, implies ujTG3(uk, u;, ;) = 0. This condition possesses a clear mechanical
meaning: the leading nonlinear structural force associated with the kth mode does not perform work in the
virtual displacement of the jth mode, for all j # k. Therefore, there cannot be corrections from the other
modes to the kth linear normal mode.

It is useful to see how to exploit the presented results when dealing with spatially continuous systems.
Employing the discretization approach, the distributed-parameter system is transformed into a discrete
system. Following the same line of analysis used for discrete structural systems, one viable strategy is to
seek the nonlinear normal modes as a superposition of the linear normal modes &;(x) as

N

o(x 1) & ) q(1) @) (47)

=

where v(x, ) is the unknown displacement, g; is the linear modal coordinate and N is the number of linear
modes retained in the discretization process. Then, using, e.g., the Galerkin method to minimize the
residuals, the discretized equations in the modal coordinates are obtained in the form of Eq. (2). Thereafter,
assuming as initial conditions ¢;(t) = ai, pi(to) = 0, and substituting (41) and (42) into (47), the kth
nonlinear mode shape can be expressed as vy(x, ) =~ a,®i(x) + 1/4a; Zj.vzl#k (€ + Zu) D;(x). Next,
dividing the obtained function by a;, so as to normalize the mode shape with respect to a;, yields the
following nonlinear mode shape:



P )+l D (64 7000 (48)

4. Resonant nonlinear normal modes

When two or more frequencies are commensurable with an appropriate integer ratio, the structure may
experience internal resonances. When such a condition occurs, an energy exchange between the two (or
more) resonant modes is observed. Hence, the general solution presented in the previous section must be
modified in order to account for the modal interaction.

Assuming that two arbitrary frequencies, wy, and y,, are commensurable, the first-order solution of (7)
is replaced by

q, = A& u, + 4,0, + cc (49)

P, = iwoud,e ", + iwg,4,e " "u, + cc (50)

Since the problem at order €2 is empty as shown in Section 3, 4,, = 4,,(7>) and 4, = 4,(T»). Equations (49)
and (50) are substituted into the third-order problem which, in turn, becomes

Doq; — p3 = —(Dr4,,)e " ou,, — (D,4,)e " u, + cc (51)

: iwom T : iwo, T 27 Lo Tt
Dop; + Aq; = —1wg, (D24,) e 0w, — 100, (D24,)e' " *u, + E A A; A0

k=m,n

. J— . J— . 72 S _
=+ E bkkkAie:“kaTO + RmnAmAnAnelwo"’To 4 anAnAmAmelmO"TO 4 SmnAnAmel(mon 200m) To

k=
+ Snd2A,, e n=em 4 ce (52)

where
A = 3G (uy, w, up) + @ Iz (ug, wp, up) — 30f I (ug, uy, wy) (53)
b = Ga(ug, up, we) — gL (e, we, u) — g, I (ug, ug, wy) (54)

Rmn = 2G3(um7 u,, un) + 2G3 (um W, un) + 2G3 (um u,, um) + 2603,113 (um; u,, un) - 2wénlz (umv u,, ll,,)
= 205,15 (w,, 0, w,) — 200, 15 (w,, w0, w,) (55)

an = 2G3 (una U, um) + 2G3 (um; u,, um) + 2G3 (urm u,, un) + 2(03,1113 (una U, um)

=205, I (u,,u,,u,) — 205, T (0, 0,,u,) — 207 T;(u,,u,,u,) (56)

Smn = G3 (um; U, un) womIS (ll,,, U, um) + COOnCOOm(I? (um; u,, um) + I3 (llm, U, ll,,))

COOmI (ll,” W, um) COOMI§ (um? W, uﬂ) wOWI (um? U, um) (57)

Snm = G? (una u,, um) - wénl3(um7 u,, un) + G)Ona)0m(13 (um U, un) + IS (un; u,, um))

- wén(lg(u’munaun) +I§(umuwun)) wOmI*(unvumum) (58)
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In the following, a typical internal resonance for systems with cubic nonlinearities is considered, namely,
a three-to-one internal resonance. To describe quantitatively the nearness of wy, and wy,, the detuning
parameter ¢ is introduced as

Won = 300 + €20 (59)

Imposing separately the two orthogonality conditions between the solutions of the adjoint homogeneous
problem and the inhomogeneous terms of (51) and (52), the following modulation equations are obtained:

Doy = 5o [ Cond Ao -+ (0 R Ay - (0 S10) A, | (60)
1 _ N .
Doy = 3o [rmAﬁA,, + (W' R ) Ay A A, + (u}bmm,,,)A;e*'“Tz} (61)

where I';;; = uja,;, with j = m,n, and is explicitly given by Eq. (17).
Substituting (60) and (61) into (51) and (52), the solution at order €* is sought in the form

q; = z]AmAnAnelwomTo + ZzAnAmAmelwonTo 4 Z3AiAmel<J0mTo 4 Z4AiA,,ew)“”To + zsAnAmel(U)oanom)To

+ Z6A’212mel(2woﬂ,wom)TO 4 Z7A’3ne3nwom Ty + ZgAieZ’nwonTo +ce (62)

o~ J— . - J— . - — . - — . - 72 . .
Py =i WlAmAnAnelwomTo + WZAnAmAmelwonTo + W3A31Ame1w0m]'0 + W4A5A,,elwo"TO + wsAnAmel(tuo,,,ngm)To
+ VNVﬁAiAmel(zwo”’w“”‘)TO + ‘7V7A’3ne3lwomfo + ‘7V8A’3'e3lwouToj| +cc (63)

Inserting (62) and (63) into (51) and (52), and equating the coefficients of like harmonic terms to 0, a set of
16 algebraic problems is obtained as reported, along with the solutions, in Appendix A.
Expressing 4,, and 4, in polar forms

A,(T) =1a, (1) ™ and  4,(T) = la,(T)e ™) (64)

and substituting them into the modulation equations (60) and (61), and separating real and imaginary
parts, yields

TS
Dya,, = Wanafn siny (65)
_ (uzbmmm) 3 -
Dzan = — 8T0nam Sin vy (66)
_ mem 3 (uiRmn) 2 (uzsmn) 2
anDyp,, = — S, " Boon. aa, — R0, a,a, cosy (67)
TR T
anD2¢n _ Ln a3 . (un nm) a2 a, — Mafn cos?y (68)

80)0n " 8(()(),, " 8 Won

where y = o5 + ¢, — 3¢,, is the relative phase.

The modulation equations (60) and (61), cast in Cartesian form, can describe a wide range of motions,
including also quasiperiodic and chaotic motions. Here, we are specifically interested in periodic motions
whereby the nonlinear frequencies of the interacting modes lock into an integer ratio equal to 3. The local
bifurcations of these motions indicate the post-critical responses bifurcating from them although these do
not cover the full range of solutions which could be captured by a global analysis only. Moreover, the
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periodic motions provide an underlying ‘skeleton’ structure to the system behavior also in the presence of
weak damping and forcing.

Seeking periodic structural motions, a, and @, must be constant; hence, D,a,, = D,a, = 0 and Egs. (65)
and (66) are satisfied when (a) a,, = 0 and a, # 0 and (b) (a,,a,) # (0,0) and siny = 0 because (u'S,,,) and
(u'b,,,,) are assumed different from 0. The first case corresponds to the uncoupled high-frequency mode
whereas case (b) yields coupled modes. For coupled modes, y = kn, with k£ =0,4+1,4+2,... The third
independent equation governs the modulation of the relative phase and is obtained as

Dividing (67) and (68) by a,, and a,, respectively, and substituting the resulting expressions into (69), and
letting D,y = 0, leads to

3mem ll an :| |: 3“;Rmn) . F,,,m :| 2 (3u,£Sm,,)
3

(cos ) antn

Dyy = —
2y {8(00,” 8w, 8wom 8wy, 8Wom

(ll bmmm)
a 8w Won

Dividing (70) by a?, the following equation is obtained:

(cos y) o +0=0 (70)

(unTbmmm) 3 (u” an) 3mem 2 (3umsmn) ann (3u;Rmn) x
8(/‘)On (COS /)c + |: 8(UOn a 8(,0(),,1 :|C a 8wOm (Cosy)c+ |:8w0n a 8('UOm —o =0

(71)
where ¢ = a,,/a, and ¢* = a/ai. Since it is y = km, cosy = £1; however, as shown in (Lacarbonara et al.,

2003) equations of type (71), with y = k=, possess at most three solutions. Therein, it is also demonstrated
that if

U by = 0 (72)

the two modes under investigation are orthogonal and, hence, they do not interact.
Among all of the solutions of (71), one needs to distinguish those that are stable from those that are
unstable. This can be achieved calculating the eigenvalues of the following Jacobian matrix:

A(Dyan) a(Dza,,,) a(Dgam)
Oay, Oay, oy
P apy) = |22 W) 73)
aDy) Dy D)
Oay, Oay, oy
Using Egs. (65), (66) and (70), Eq. (73) becomes
0 0 g
J=10 0 o (74)
B X 0
where
u;Smn unTbmmm
X1 :uanaiv X2:7u zp
860(),,, 80)0,,
3mem uTRnﬂl 3uTSmn uTbmmm 2
o[ @R (NS (o)
: 860(),” 8(/0071 8w0m 8(1)(),, a,
3uT Rmn F"ﬂl’l 3uT S’nn uTbmmm a
L [BUR) D], (uSw) | (lb) @
8(/UOm 8(,0(),, 8(UOm 8(,00,1 a
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The eigenvalues of (74), on account of the fact that the first- and third-order invariants of the Jacobian
matrix (74) are 0, are expressed as

=0, Joz =EV—-1 (75)
where I, = — ()4 + 13)1) is the second-order invariant. In order to have marginally stable solutions, 4,3

must be imaginary, that is, I, > 0, equivalently (y,y, + x3%1) < 0. Consequently, the modes are unstable
when I, < 0, that is (y,y4 + %31) > 0. This condition can be rewritten as

uTbmmm ? 4 uTbmmm 3uTSmn 2 uTbmmm 3uTle‘l me
n & 2 n m o+ 2 n m _
80)0)1 80)0}1 8a)Om 80)07! 8(UOm 8600}1
T Smn 3 mel’ﬂ TRYIWI T SWIVI 3 T Smn
_ u, _ u, c— u, u, <0 (76)
8(00,,,, 8600,7, 8(00,1 8(}\)Om 8(00»1
Solving the inequality (76) gives the range of ¢ where the solution becomes unstable.

Next, the displacement and velocity vectors are cast in real form. Integrating (67) and (68), the phases ¢,,
and ¢, are obtained as

¢, = — 8; E [, + (UL R @ + (0hS,m) duan(cos )|t + by, (77)
Om
3
qbn - 8 62 meai + (u;fan)ai + (“Ibmmm) a_m (COS "/) 1+ (]50,, (78)
@op n

where ¢,,, and ¢,, are constant phases which depend on the initial conditions.
Substituting (77) and (78) into (64) and then into (49) and (50) yields

q, = a,cos6,u, + a,cosb,u,, Py = —®omay sin O,u,, — wg,a, sin H,u, (79)

where 0, = wit + ¢, With k = m, n, and the nonlinear frequencies are expressed as

0, = 0oy — 8(}) a2 [T + (WS,) (€08 7)c + (0T R)] + - (80)
Om
W, = 3o, + ezaf,{a* ~ %0 [(ulbym) (cosy)c® + (ulR,, ) + Fn,m]} + - (81)
On

where ¢ = a,,/a,. Substituting the normalized detuning ¢* given by Eq. (71) into (81), it can be shown that
o, = 3w, That is, the nonlinear resonance tunes the phases of the modes so as to render the ratio between
the nonlinear frequencies exactly equal to 3.
Substituting (77) and (78) into (64) and then into (49) and (50), using (5) and (79) yields
q = a, cos 0,u,, + a,cos O,u, + Xz,a’ + z:a,)a,, cos 0,, + Xna,, + z4a})a, cos(30,, + y)

+1z5a’.a, cos(0,, + 7) + izsana’ cos(50, + 27) + iz;a), cos 30,, + Lzga’ cos(90,, + 37) (82)

~ : . la 2 |« 2 . L 2 | o 2 .
P R —Wou@y, Sin 0,0, — wo,a, sin O,u, — (W@, + Wia,,)a, sin 0,, — ;(Waa,, + Waa,)a, sin(30,, + )

—wsaa, sin(0,, + 7) — Wea,a, sin(50,, + 2y) — Wya;, sin 30,, — Wsa, sin(90,, + 3y) (83)

From Egs. (82) and (83), the mth, nth and jth components of q and p can be explicitly written as

qn = €a,cos0,, + -, P = — €Dy, Sin 0, + - - - (84)

qn = €a,cos(36, +y)+ -, Dn = —€W0na, Sin(36,, +y) + -+ (85)
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q; = € [(ri,a, + r3;a,)an cos 0,, + (ryay, + r4;a,)a, cos(30, + 7) + rs;a,a, cos(0, + 7)

+ ré_,«aiam cos(50,, +2y) + r7,»afn cos 30,, + rg,-ai cos(96,, + 37»)] + - (86)

p=e [(sl‘,-aﬁ + 53,02 )@y S 0,, + (52,02, + s4;a>)a, sin(30,, + ) + s5;a2,a, sin(0,, +7)

+ s6;a2ay, $In(50,, + 27) + s7;a,, sin 30, + ss;a, sin(90,, + 3y)] + - -- (87)

where the coefficients 7;; and s;;, i = 1 -- -8, are reported in Appendix A.
Using Egs. (84)—(87) and trigonometric identities to express ¢g; and p; in terms of g,,, ¢,, pn, and p,, the
four-dimensional invariant manifold of the two resonant nonlinear normal modes is obtained as:

qj = 01;PnGm + 025 GmPmPn + 03D Gm + i, + 05GPy + Ui GnDmPn + 07D + O + (88)

P; = PuiPy + oD + Byipupy + Bl + Bs;@nl + BejdndnPm + Bridmdnpn + Bspnd, + -+ - (89)

where the coefficients «; and f,;, i = 1---8, are reported in Appendix A.
Next, the manifold is expressed in the physical coordinate space substituting Egs. (88) and (89) into the
transformations X = Byq and y = Byp thereby obtaining

N
X (qubon + @ibon) + D [epdm + 02 GmPubn + 05000 + Gy, + 5iGnD + i GuPuDn
J=1j#mn

+ 072G + % o, (90)

N

Y = (Pwbon + puboa) + Z [ﬁmjpi, + ﬁsz,znpn + ,83jpmp§ + ﬁnjp;: + ﬁs_/qyznpm + ﬁéquqnpm
j=gmn

+ ﬂ]/'qmqnpn + ﬁSjpﬂqi] bof (91)

Then, the nonlinear resonant mode shapes can be obtained putting ¢.(ft) = an, ¢.(t0) = a, and
DPu(to) = pa(ty) = 0 into Egs. (90) and (91). The resulting nonlinear modes can be normalized with respect to
the amplitude of the high-frequency mode, a,. Therefore,

N
bmn ~ (Cb()m + b(],,) + af, Z I:Csolmj + anj:lb()j (92)

J=Lj#mn

where b, = x/a, and y = 0.

Considering a distributed-parameter system and employing the discretization approach, the resonant
NNM'’s can be obtained substituting (88) and (89) into (47). Dividing the result by a, yields the normalized
resonant nonlinear mode shapes in the form

N T T
1 W Q,m u; bmmm
‘I’mn(x) =c®P, (x) + D, (x) + a)zl 3 J ¥
jZI,#ZIn,j;én w%j - w%m ((Uéj — 90)%”1)
u;a"”" u;bn;zn o o
+ + .
wp; — @, @ — 95, (%) (93)

where the bracketed expression is the extended form of (c3oc,,,j + o).
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5. Illustrative example

In this section, the general theoretical results are applied to an illustrative example: a hinged-hinged
uniform, linearly elastic, beam with a lumped mass m rigidly attached at an arbitrary location denoted with
x| (the star indicates dimensional variables). The geometry of the beam is pictured in Fig. 1. It is supposed
that (i) the beam oscillates in the initial rest plane with moderately large transverse deflections (shallow
configurations); (ii) the constraints act as perfect fixed hinges; (iii) Euler-Bernoulli linear bending theory
holds; (iv) no initial conditions are prescribed in the longitudinal direction. As a result of assumptions (i)
and (iv), the axial strain ¢, of the beam centerline due to the transverse displacement v is constant along the
beam span and is computed as follows (Mettler, 1962):

l ¢ ' \2 *
eo_ﬂ/o(v)dx (94)

where ¢ is the beam undeformed length and the prime indicates differentiation with respect to the coor-
dinate x*.

The beam elastic potential energy is given by both the bending and axial deformation energies and can be
written as

V[v*(x*,t*)]:%/OZEI(U*”)zdx*—F#/OKEA(/Og (u*’)zdx*ydx* (95)

where E is Young modulus, 4 is the area of the cross-section, and 7 denotes the moment of inertia about one
of the principal axes of inertia.
On the other hand, the kinetic energy is given by

1/ \2 1 /. 2
T:—/ A (u) dx’ +—m<u*(x1‘)) (96)
2 /o 2
where p is the beam mass density, m is the lumped mass, and the dot indicates differentiation with respect to
the dimensional time #*.

The linear eigenvalue problem yielding the natural frequencies and the associated linear normal modes is
solved assuming the solutions in the form

*

e
v (x", 1) & Z n;(t") sinjnx? 97)
=

where N* is the number of discretizing admissible functions. Substituting (97) and its derivatives into (95)
and (96), neglecting nonlinear terms and writing the Euler—Lagrange equations associated with the system
Lagrangian, L = T — V, yields a set of ordinary-differential equations where the jth equation in the gen-
eralized coordinates 7, is

Fig. 1. The hinged-hinged beam geometry with the lumped mass.
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N
. - X7 .. xy EI .
pALiT; + 2m< /él i smknj) s1n]7171 +€—3n4f‘nj =0 (98)

To render the equations nondimensional, we introduce the following nondimensional variables and
parameters: x = x* /¢, v = v* /{, x; = x} [{, t = wpt*, 0, = \/EI/(pAL*), and u = m/(pAL). Then, Eq. (98) can
be rewritten in nondimensional form as

v
ﬁj+2u<§:ﬁkﬁnkmm>smjmm—%ﬁijzo (99)
k=1
In turn, the set of equations (99) is rewritten in matrix form as
Mij +Knp=0 (100)

where M and K are the N* x N* mass and stiffness matrices, respectively. Seeking periodic and synchronous
motions, we let # = exp(iw?)u and obtain the algebraic eigenvalue problem in the standard form

(K- oM)u =0 (101)

where (w,u) is the eigenpair. The beam mode shapes are then expressed as
N
Pi(x) = Z”fk sin kmx (102)
k=1

In Fig. 2, variation of the lowest seven calculated nondimensional natural frequencies with the nondi-
mensional mass position x; is shown when the mass ratio is u = 10. Because the kth linear mode of the beam
without the lumped mass possesses (k — 1) nodes of vibration at x, = 1/k,2/k, ..., (k —1)/k, when the
lumped mass position is x; = x,, the corresponding beam frequency is not affected by the lumped mass as
confirmed by the numerical results in Fig. 2. Further, inspecting Fig. 2, it is worth noting that, as expected,

frequency

Fig. 2. Variation of the lowest seven nondimensional natural frequencies with x; when u = 10. The frequency axis is in log scale.
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Table 1

Some cases where three-to-one internal resonances may occur
m,n Mok u X1
1,2 Wy = 3wy = 21.00 10 (0.0637,0.9363)
3,5 wps = 3wz = 226.70 10 (0.2335,0.7665)
2,3 o3 = 3w, = 88.50 10 (0.3432,0.6568)
4,7 w7 = 3w = 473.74 0.024 0.5

no one-to-one internal resonances occur, while a few three-to-one internal resonances may occur. In
Table 1, there are reported the values of the mass ratio x and mass position x; for which three-to-one
internal resonances are possible.

As already mentioned in Sections 2 and 3, the nonlinear normal modes are sought as a superposition of
the linear normal modes in the form given by (47). Substituting (47) into the system Lagrangian and writing
the associated Euler-Lagrange equations, the nonlinear problem is cast in the form of Eq. (2) where the ith
equation, in nondimensional form, is

R P Z >3 g [ sweme)( [ owema) (103

Here, A is the beam slenderness defined as A = ¢/r, with r = /I /4 denoting the radius of gyration of the
cross-section.

The individual mode shapes are expressed by (48) whereas the resonant nonlinear mode shapes are given
by (93).

5.1. Individual nonlinear normal modes

Three meaningful cases of individual NNM’s are considered in the following: (i) u = 0 (beam without
lumped mass); (ii) x = 10 and x; = 0.5; (iii) © = 10 and x; = 0.25. Solving the linear eigenvalue problem
with N* = 20, the nonlinear frequencies of the lowest six modes have been computed according to Eq. (34)
and are reported in Tables 2-4. Clearly, the nonlinear frequencies, to within second order, depend on the
square of the oscillation amplitude and the beam slenderness. The curves representing variation of the
nonlinear frequencies with the amplitude, the so-called backbone curves, are shown for case (i) and 1 = 30
in Fig. 3. In the same figure, representative frequency-response curves are depicted considering weak
harmonic forcing and viscous linear damping. The case of weak forcing and light viscous damping can be
easily treated letting the forcing and damping terms appear at third order in Eq. (9). It is to be noted that all
of the curves, as expected, are bent to the right indicating a hardening behavior (i.e., the oscillation fre-
quency increases with the amplitude). Subsequently, the nonlinear mode shapes have been computed
according to Eq. (48) with N = 10.

Table 2
Nonlinear frequency laws for the lowest six modes when =0
k Wy
1 o = 9.87 4 0.46)°a}
2 ; = 39.48 4+ 1.85/%a3
3 w3 = 88.83 + 4.16/%a
4 wy = 15791 4 7.40/24;
5 s = 246.74 + 11.57)%a
6 ws = 355.30 4+ 16.6577a;
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Table 3
Nonlinear frequency laws for the lowest six modes when = 10 and x; = 0.5
k Wy
1 o) = 2.14 4 0.00461° >
2 w; =39.48 4+ 1.85/%a3
3 3 = 62.64 4 1.672°a3
4 wy = 157.91 4 7.40/2a;
5 ws = 202.72 + 7.28)%a’
6 wg = 355.30 4 16.65/2a2

Table 4
Nonlinear frequency laws for the lowest six modes when u = 10 and x; = 0.25
k Wy
1 o, = 2.81 +0.009/%a?
2 wy = 24.17 4 0.70/%a3
3 w3 = 78.46 + 3.24)%a;
4 oy = 15791 + 7402’}
5 ws = 213.73 4+ 7.72)%a
6 w = 309.42 + 12.70,%a}
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T 7 &
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0 o N
240 250 260 270 340 380 380 400
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Fig. 3. Backbones of the lowest six modes and representative frequency-response curves when p = 0.

The case with ¢ = 0 corresponds to the simply supported uniform beam whose modes are an infinite
sequence of symmetric and skew-symmetric modes. Using Egs. (26) and (28), it turns out that the coeffi-
cients ¢ and & are 0 for any j and £; this is due to the fact that the work done by the nonlinear restoring
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Mode 3 Mode 4
Mode 5 Mode 6

DN DN

Fig. 4. The lowest six linear normal modes (thin line) and the corresponding individual nonlinear normal modes (thick line) when
w=0.

force associated with one mode in the virtual displacement associated with any of the other modes vanishes.
Consequently, Eq. (48) yields b, = by, for any & and no difference between the linear and nonlinear modes
occurs as confirmed in Fig. 4. The ensuing modes are similar nonlinear normal modes. It is worth noting that
this result was obtained by Rosenberg (1966) in the general context of homogeneous mechanical systems
(i.e., arrays of equal masses and nonlinear springs).

In the same way, both the nonlinear frequencies and corresponding mode shapes have been computed
for the second sample beam when y = 10 and x; = 0.5. The lowest six calculated backbones are reported in
Table 3 and a representation of them, for A = 30, is given in Fig. 5 along with some frequency-response
curves. On the other hand, in Fig. 6, the lowest six individual nonlinear mode shapes are contrasted with the
corresponding linear mode shapes. It is worth pointing out that, since the lumped mass is located at the
beam midspan, the mode shapes are either symmetric or skew-symmetric. The mass location is a vibration
node for the even modes; therefore, the modal masses of such modes are not influenced by the lumped mass
whereas it affects the modal mass of the symmetric modes. This is evident comparing the nonlinear fre-
quency laws with those obtained for the beam without the lumped mass. For the odd modes (i.e., symmetric
mode shapes), the effect of the lumped mass is to reduce both the linear modal frequencies and their
nonlinear corrections. In fact, in Figs. 5 and 6, we note that the backbone of the first mode is very slightly
bent to the right and the difference between the nonlinear mode shape and the linear mode shape is not
discernible. On the other hand, the effects of the higher-order symmetric linear mode shapes onto the other
symmetric nonlinear mode shapes, such as the third and fifth modes, are evident in their more flexible
configurations (Fig. 6).

For the third sample beam (1 = 10 and x; = 0.25), the computed nonlinear frequency laws are reported
in Table 4 and a representation of them is given in Fig. 7. In this case, the modes are neither symmetric nor
skew-symmetric. Hence, (6, Z ) # (0, 0); higher-order corrections come into play for both even and odd
modes. The comparison between the linear and the nonlinear mode shapes is pictured in Fig. 8. Here, it is to
be observed that, for this system, the lumped mass is located in one of the vibration nodes of the fourth
mode; therefore, the fourth individual nonlinear normal mode is not influenced by the mass as it can be
ascertained comparing its nonlinear frequency law with that obtained for the system without the lumped
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Fig. 5. Backbones of the lowest six modes and representative frequency-response curves when p = 10 and x; = 0.5.
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Fig. 6. The lowest six linear normal modes (thin line) and the corresponding individual nonlinear normal modes (thick line) when
=10 and x; = 0.5.

mass and is a similar nonlinear normal mode. For this sample beam, a convergence study has also been
conducted to evaluate the effect of the modal truncation on the nonlinear normal modes. In particular, the
convergence of the series in Eq. (48) has been tested analyzing the behavior of the coefficients
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Fig. 7. Lowest six backbones and representative frequency-response curves when g = 10 and x; = 0.25.
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Fig. 8. The lowest six linear normal modes (thin line) and the corresponding individual nonlinear normal modes (thick line) when

w=10and x; = 0.25.

1/4(%y + Z ) for increasing mode number up to 15. The results are summarized in Table 5. Practically,
convergence is achieved with 10 linear modes for the lowest three NNM’s. At the same time, it is interesting
to evaluate the relative importance of the nonlinear corrections to the linear characteristics concerning both

the frequencies and the mode shapes. To this end, we computed the following quantities:
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Table 5
Convergence of the coefficient 1/4(% + Z;) in the individual nonlinear mode shapes
j Mode k =1 Mode k =2 Mode k =3 Mode k =5 Mode k=6
1 +0.00x 10+ +5.20x 107 -9.48x10~% —4.26x107% 2.18x107%
2 —2.67x107% +0.00x 1079 +5.31x107% +2.70x 107 -1.44x107%
3 +1.22x107% -4.09% 107 +0.00 x 10+ —-4.82x107% +2.58x 1079
4 —6.62x 1072 +1.41x 10716 +7.38x 10715 +5.86x 10714 +4.99x 10715
5 +2.22x107% -3.76x107% -4.10x107% +0.00 x 10+ +1.42x107%
6 —7.28x 10777 +1.26x 107 -1.14x107% —8.46x 107 +0.00x 1079
7 -1.83x10°Y +3.27x107% -2.50x107% -1.30x10°% +3.55x107%
8 +4.29%x 1072 -3.12x 1077 -2.30x 10716 -3.98x 10716 +8.97x 10717
9 -1.09x107% +2.01x107°% -1.52x107% -2.48x107% +9.78 x 1070
10 -5.23x107% +9.73x 107% —7.42x107% -9.04x107% -7.29%107%
11 -1.91x107% +3.61x107% -2.79%107% -3.13x107% +6.51x107%
12 +2.08x 1072 -1.10x 10718 +1.44x 1077 -2.62x 1077 -9.98x 107"
13 -1.68x107% +3.20x107% -2.51x107% -2.76x107% +4.88x 1070
14 +9.34x107% -1.79x 107% +1.42x107% +1.56x 107 -2.70x107%
15 +4.04x 107 -7.80x107% +6.20x 107 +6.86x107% -1.18x107%
Table 6
Percent variation of the frequencies and the nonlinear mode shapes
Mode k Awk‘] 0 A‘I’k%
1 0.32 0.56
2 2.89 3.77
3 4.13 3.23
4 4.69 0.00
5 3.61 14.31
6 4.10 18.08
W — W 1 o
A% = ——H o= - o (104)
Oor  (axh) wor
and
N
V- & | 1 Dk (C+ i) P | 1
|AW,|% = max | ———* 5% = max | =~ vy (Gt i) B —% (105)
D | (arh) 49, A

in x € [0, 1]. These quantities, reported in Table 6, allow to estimate the relative nonlinear deviation from
the linear characteristics; to make the results general, they have been divided by the square of the beam
slenderness and oscillation amplitude. For example, for the lowest four modes, Aw;% = O(1) and
|A¥,|% = O(1); consequently, the actual frequency and mode shape variations are O((a;2)’). Hence,
considering, e.g., a; = 0.05 and 1 = 30, the percent variation is O(1).

5.2. Resonant nonlinear normal modes

A three-to-one internal resonance between the lowest two modes, occurring in a beam carrying a large
mass whose center is in a slight offset with respect to the beam supports (u = 10 and x; = 0.0637), has been
investigated. Variation of the amplitude ratio ¢ with the normalized detuning ¢* has been evaluated
according to (71), while the stability of the solutions has been ascertained using (76). For beams with
A = 30, the calculated curve is shown in Fig. 9. Inspecting this figure, it is to be pointed out that, depending
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Fig. 9. Variation of the amplitude ratio ¢ with the normalized resonance detuning ¢* when u = 10 and x; = 0.0637.

on the range of the detuning parameter ¢*, the beam may possess (i) one stable resonant NNM, (ii) one
unstable and two stable resonant NNM’s and (iii) three stable resonant NNM’s. The computed range of ¢
where unstable and stable NNM’s coexist is [-5.7865, 0.091]. The number of nonlinear normal modes is
greater than the number of linear normal modes involved in the resonance in agreement with the results of
Nayfeh et al. (1996), King and Vakakis (1996), Nayfeh et al. (1999), and Lacarbonara et al. (2003). It is also
to be noted that, since the involved frequencies are O(10) (i.e., wg, = 21.03), the detuning parameter ¢ must
be O(1) as, in fact, this was assumed in the analysis; therefore, taking into account that ¢* = /a2 = O(10%)
as inferred from Fig. 9, the amplitude a, must be O(1072). This is consistent with the considered range of
variation of the oscillation amplitudes in the backbones of the individual NNM’s (Figs. 3, 5, and 7).

According to (80) and (81), the curves w; — ¢ and w, — ¢ have been computed and pictured in Fig. 10.
Considering, for example, the detuning ¢* = 2 x 104, then the beam exhibits three stable resonant NNM’s
marked 1, 2, and 3 in Figs. 9 and 10. It is interesting to appreciate the difference in the nonlinear frequencies
associated with the coexisting NNM'’s, especially between those marked 2 and 3. Furthermore, it is of
interest to evaluate the different signatures of the coexisting stable NNM’s in the corresponding mode
shapes. It is important, however, to preliminarily assess the convergence properties of the nonlinear
coefficients o,,; and a,; in Eq. (93). Considering the lowest 15 modes, the obtained convergence results are
reported in Table 7. The convergence is practically attained with six modes; we further observe that o,,
converges faster than o,; does. We also note that, for the NNM denoted with 3, the nonlinear coefficient is
O(10%) whereas the relative amplitude ¢, determining the amplitude of the nonlinear mode at first order, is
0O(10). However, because the nonlinear correction at second order depends on the square of a,, when the
amplitude a, is O(1072), the nonlinear correction becomes O(10~!). This is consistent with the performed
perturbation analysis.

Retaining the lowest 10 modes, the calculated resonant nonlinear mode shapes are shown with thick
solid lines in Figs. 11(b)—(d) whereas the thin solid lines indicate the interacting first and second linear
normal modes in Figs. 11(a)-(d). In the resonant nonlinear mode shapes, the contribution of the higher
modes, namely the third, fourth, and fifth linear modes, is clear. This is particularly evident in the NNM in
Fig. 11(d).

Similar features have been found in the resonant NNM’s arising from other three-to-one internal res-
onances although the results are not reported for sake of conciseness. Finally, it is pointed out that there are
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Fig. 10. Variation of the frequencies w; and w, with the amplitude ratio ¢ when u = 10 and a = 0.005.

Table 7

Convergence of the coefficients in the resonant nonlinear mode shapes
Mode j O j Onj (63 Omj + O‘n/')

c="1.57 c=-11.74 c=-19.15

3 +3.90x 10! -5.39%x 107! +1.69 x 10*2 -6.47x10%2 -2.65x10"3
4 +6.04x 1072 +7.22x107! +2.70x 107! -9.94x 107! —-4.09% 102
5 +1.53x1072 +1.86x 10! +6.84x10*0 -2.52x10*! -1.04x10%2
6 -5.16x1073 —-6.53x 1072 -2.31x 1070 +8.49x 1070 +3.49x 10*!
7 +2.08x 1073 +2.72x 1072 +9.33%x 107! -3.43%x10*° -1.41x10"!
8 -9.55x10™* -1.28x 1072 -4.28%x 107! +1.57x 10*° +6.47x 1070
9 +4.79%107* +6.51x1073 +2.15% 107! -7.88x107" -3.24x10%°
10 -2.56x107* -3.53x1073 -1.15x 107! +4.21x 107! +1.73x10%°
11 +1.43%x107* +1.99x1073 +6.41x1072 -2.35%x 107! -9.68x 107!
12 -8.17x1073 -1.15x 1073 -3.66x 1072 +1.34x 107! +5.53x107!
13 -4.63x1073 -6.54x10* -2.08x1072 +7.61x1072 +3.13x 107!
14 +2.43%x1073 +3.46x107* +1.09% 1072 -4.00x 1072 -1.65%x 107!
15 -9.08x107° -1.30x10~* -4.08x1073 +1.49x1072 +6.15x1072

cases where, although the linear frequencies are commensurable with a 3:1 integer ratio, the interaction
does not actually occur. It is, for instance, the last case in Table 1, where wy; = 3wy = 473.74; in fact, the
orthogonality condition u}b444 = 0 is satisfied and the two modes happen to be nonresonant.

6. Conclusions

In this paper, an analytical construction of the nonlinear normal modes of general multi-degree-of-
freedom self-adjoint structural systems with weak cubic geometric and inertia nonlinearities has been
pursued. The employed asymptotic approach, based on the method of multiple scales, attempts to gen-
eralize previous studies in that it systematically leads to the closed-form invariant manifolds and the
nonlinear mode shapes (nonlinear eigenvectors) as an extension of the linear counterparts. These modes
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Fig. 11. (a) The lowest two linear mode shapes when x; = 0.0637 and u = 10 and (b)—(d) the resonant nonlinear mode shapes (thick
lines) superimposed on their first-order parts (thin lines) corresponding to the solutions marked 1 (b), 2 (c), and 3 (d) in Figs. 9 and 10.

have been calculated away from internal resonances—individual nonlinear normal modes—and in their
vicinity—resonant nonlinear normal modes. The employed operator notation makes the results general and
the computational implementation effective also with large systems.

The motivation for employing the asymptotic approach lies in the fact that the closed-form NNM’s can
be used to investigate general properties of certain classes of structural systems undergoing moderately
large vibration amplitudes. Along these lines, closed-form conditions were determined for systems pos-
sessing similar normal modes. Further, the obtained closed-form NNM’s are amenable to be exploited for
nonlinear modal-type analyses of general self-adjoint structural systems with many degrees of freedom.

To corroborate the presented theoretical results, an illustrative example has been discussed, a hinged—
hinged uniform elastic beam carrying a lumped mass. Depending on the lumped mass relative to the beam
mass and on its location along the beam, different classes of individual and resonant NNM'’s have been
found. The differences can be remarkable as in the case when the mass is at the midspan with respect to
the case when it is in some other locations. While with the mass at the midspan, the NNM’s preserve
the symmetric and skew-symmetric nature of the linear normal modes and the symmetric NNM’s only
are affected by higher-order modal contributions, in other mass locations along the span, the modes are
hybrid and are always affected by the nonlinear stretching effect activating a funicular load-carrying
mechanism. In addition, the general convergence properties of the nonlinear mode shapes have been dis-
cussed. The results also indicate that different reduced-order models must be knowledgeably constructed
using the obtained NNM’s depending on the inertial-geometric features of the considered beam as in more
general structures.

Acknowledgements

This work was partially supported by the FY-2002 Giovani Ricercatori Grant (Young Investigators
Grant) from the University of Rome La Sapienza.



W. Lacarbonara, R. Camillacci | International Journal of Solids and Structures 41 (2004) 5565-5594 5589

Appendix A
A.l. Higher-order functions

Substituting (62) and (63) into (51) and (52), and equating the coefficients of like harmonic terms to 0,
the following set of 16 algebraic problems is obtained:

WonZi — Wy = %MUI?RM% (A1)
— oW1 + Az = 1w R0, + Ry, (A.2)
_ 1
WomZ3 — W3 = mrmmmum (A.3)
—@0W3 + AZ3y = =30 W + Ay (A4)
N -
(@on — 200)Z5 — W5 = mumsmnum (A.5)
—(won — 200m)WsAzs = —Jul'S,,u, + S, (A.6)
I R
Wonty = W2 =5, R,u, (A7)
—wo,W2 + Az = —Ju R0, + R, (A.8)
_ 1
WonZs — Wy = mrnnnun (A.9)
—w0,Ws + Azy = =100, + Ay (A.10)
3wonty — W7 = LllTbmrmnlln (A.11)
2w, "
=300 W7 + AZ7 = =20 Dy + By (A.12)
(2wo, — Wom)2s — We = 0 (A.13)
—(2won — Wom)We + AZg = S, (A.14)
3wo,zg — Wy =0 (A.15)
—3wo,Ws + Azg = b, (A.16)
The solutions of (A.1)-(A.16) are
N T
z) = 4(3)(2)”1 (u'R,,)u, +j:§m —w%: ’ f{’:;(z)m u; (A.17)
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~ 1 TR N u;Rnln A8
1 u; an
(u R,,)u, + Z u (A.19)
4, j=lj#n wol - o,
1 Y. uR,,
WZ = =5 (u an)un + Wop 7“' (AZO)
4, ; %;n —wi
1 ll Apmm
7 = mmmum + u; (AZI)
40‘)0 J ;&m wOm
= uTammm
W3 = _—mem m m QS 7 W A.22
W3 4o, u,, + - 12];,,1 mp-y u; ( )
1 ll annn
7y = Ly, + Z u; (A23)
4 J=1j#n 0/ - wO”
1 X uia,,
V~V4 = - _meun + o, j‘“j (A24)
fon 2, R
u’s,,
Zs = ( TSmn um + Z uj (AZS)
j=1,j#m w()j wOm
_ 1 NooufS,,
= - Smn m m ——y; A.26
ws 4600m (um )u + j:%;ém (U(z)j - (U(Z)m K ( )
N TS
Tmend!] A27
%= ot asag, (.27
NoufS,,
We = (2 n m A28
We = (200, — Z w% = 25w0 ( )
j=1 )j m
1 Tbmmm
77 = ( mmm un + j (A29)
40, j= %n WF; — 0,
- 1 T N uTbmmm
w un bmmm u, + WOom ./7“_ A30
' 4o ( ) ' j:%en gy — @@, (A.30)
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T
bnnn

Z oo (A.31)

N T
u ' bnnn

Ws =300, ) 5o W (A.32)

oy — 9wy,

A.2. Coefficients appearing in the invariant manifolds

Substituting Egs. (A.17)-(A.32) into (82) and (83), the coefficients of (86) and (87) can be expressed as

u;Rnln A 33
= 4(60(2)_/ - w(z)m) (A.33)

Py = ﬂ (A.34)
4(“’%}_/ - w(z)n)
oy = W B (A.35)
4(w(2)j —o},)
ray = L L (A.36)
4((931' - o5,)
ry = w7 S, (A.37)
4(“’8] )
us,,
ro; = m (A.38)
ry = Wb (A.39)
4((98] )
u;b,,,
rg; = 44(0)0/ 907 ) (A.40)
u'R,,,
5= o g s (A1)
u/R,,
§2j = —@on m (A42)
u'a
) = g (A4)

4(60%] - a)Om)
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= LT (A.44)
WO~ 3, '
_ u; S, (A.45)
A 4(6‘)3/ - wém) .
5 _ YSm A.46
S =~ wom4(w§j —25a32,) (A46)
u;rbmmm A47
§7; = *womm ( . )
- 3 u}bllnll A48
T T g (w, = 92, (A.48)
The coefficients in Egs. (88) and (89) are
I"3j - 3/"7]'
oy = ——5—= (A.49)
g,
2(rj + 2rs;
ooy = 2+ 2051 (A.50)
0m (D0n
21
azy = = (A.51)
On
Uj = 135 =+ r7; (ASZ)
2}"2~
os) = w—%’ (A.53)
2(ry; + 2rg;
2y — w (A.54)
0m (D0n
R P
oy = “1(072“/ (A.55)
On
Oan:I"4j—|—r8j (A56)
87, — 835
B =2 J (A.57)
/ wam
2S2/'
BZJ w%mwOn ( )
2S1j
= A.59
B}j w()mw%n ( )
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Sg; — S4;
T oy,
s3; + 3s7;
Bs; = —ﬁ (A.61)
2(s2; + 2s5;
B = % (A.62)
2(s1; — 256;
B, — % (A.63)
_ S4; + 3S3j A.64
Bs; = P (A.64)
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