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Abstract

An asymptotic approach, based on the method of multiple scales, is employed to construct the nonlinear normal

modes (NNM’s) of self-adjoint structural systems with arbitrary linear inertia and elastic stiffness operators, general

cubic inertia and geometric nonlinearities. The methodology employed for constructing the approximate invariant

manifolds of individual NNM’s––away from internal resonances––and of the resonant modes––near three-to-one

internal resonances––attempts to generalize previous studies based on asymptotic techniques. The theory is applied to a

hinged–hinged uniform elastic beam carrying a lumped mass and undergoing axis stretching. Depending on the lumped

mass relative to the beam mass and on its position along the span, different classes of nonlinear normal modes and their

stability are investigated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of normal modes of vibration is well established for linear oscillatory systems. The linear

normal modes, defined as eigenvectors (eigenfunctions) of the governing linear differential (partial-differ-

ential) problem, remarkably lead to the expansion theorem allowing to express an arbitrary response as a

superposition of modal contributions. Another distinguished modal property, the invariance, often allows

for the reduction of the modeled modes.

The idea of extending the concept of normal modes to nonlinear systems was first proposed by

Rosenberg (1962, 1966) for finite-degree-of-freedom systems. Rand (1974), Rand et al. (1992), Vakakis and

Rand (1992), and Vakakis et al. (1996) have made important contributions to the problem of defining
theoretically and constructing analytically the nonlinear normal modes.
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Shaw and Pierre (1991, 1993) introduced the concept of nonlinear normal modes as low-dimensional

(typically, two-dimensional) invariant-manifolds tangent to the hyperplane spanned by the linear modes in

the phase space. They used a real-valued invariant-manifold approach to construct the nonlinear normal

modes of conservative as well as nonconservative vibratory finite-degree-of-freedom systems away from
internal resonances. The nonlinear mode shapes were determined in a manner similar to center manifold

reduction borrowed from bifurcation theory. Pesheck et al. (2001) extended the invariant-manifold method

also to the case of internal resonances.

Nayfeh and Nayfeh (1994, 1995) used a complex-valued invariant-manifold approach to construct the

nonlinear normal modes of multi-degree-of-freedom systems with quadratic and cubic nonlinearities.

Nayfeh et al. (1996) extended this approach to the cases of one-to-one and three-to-one internal resonances.

A comparison of different approximate methods for constructing the nonlinear normal modes of discrete

systems can be found in Camillacci (2003).
Several methods have also been proposed for weakly nonlinear distributed-parameter systems; they

include the energy method of King and Vakakis (1993, 1996), the method of harmonic balance, treatments

of a discretized version, and direct methods.

With the discretization approach one assumes the solution as an expansion in terms of basis functions

from a complete set and then uses one of the variants of the method of weighted residuals to obtain an

infinite set of ordinary-differential equations. The infinite set of equations is truncated to practically

compute the nonlinear normal modes. Then, the discretized equations are treated with the real-valued or

complex-valued form of the invariant-manifold approach, the energy approach, or an asymptotic method.
King and Vakakis (1996) used the energy approach to compute the nonlinear normal modes of a hinged–

clamped beam in the case of a three-to-one internal resonance between the lowest two modes. They per-

formed a convergence study for various modal truncations and obtained sufficiently accurate solutions by

considering the lowest nine modes. They found either one or three nonlinear modes; using Floquet theory it

was predicted that, at a given detuning, one mode is unstable and the other two modes are stable.

On the other hand, direct analytical techniques, such as the method of harmonic balance or the method

of multiple scales, have also been used to construct the nonlinear normal modes of continuous systems.

These techniques do not require an a priori assumption of the form of the solution. Pak et al. (1992), King
and Vakakis (1993), Shaw and Pierre (1994), Nayfeh (1995), Nayfeh et al. (1999), Lacarbonara et al. (2003),

and Lacarbonara and Rega (2003) used this approach to determine the nonlinear modes of several one-

dimensional spatially continuous systems.

In this paper, an asymptotic approach, based on the method of multiple scales, is employed to construct

the individual as well as the resonant nonlinear normal modes of self-adjoint structures with general

symmetric nonlinearities of the geometric and inertia type. Asymmetric nonlinearities––such as quadratic

nonlinearities––have not been here considered because the reference mechanical systems (e.g., shear-type

building structures) belong to the class of structural systems where the symmetric restoring forces are
dominant. With symmetric and asymmetric nonlinearities, the methodology could be conveniently modified

as done in the general context of distributed-parameter systems discussed in Lacarbonara et al. (2003) and

Lacarbonara and Rega (2003).

In the present work, the achieved outcomes are the invariant physical manifolds associated with the

modes, the mode shapes (nonlinear eigenvectors) and the nonlinear frequency dependence on the vibration

amplitude. With respect to previous studies based on the method of multiple scales (Nayfeh, 1995; Nayfeh

et al., 1999; Lacarbonara et al., 2003; Lacarbonara and Rega, 2003), here the methodology is developed and

discussed in a systematic format including the fundamental steps leading to the nonlinear mode shapes.
These are obtained as an extension of the linear eigenvectors and, more importantly, the extent of the

nonlinear corrections is discussed and interpreted mechanically resorting to the concept of virtual work.

Further, the generated results are system-independent and as such they can be suitably exploited for

nonlinear modal-type analyses of general nonlinear structural systems. In fact, as the normal modes of
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linear systems are conveniently used in modal analyses, the concept of nonlinear normal modes of vibration

suggests the definition of a nonlinear modal analysis (Pesheck et al., 2001) whereby an arbitrary nonlinear

vibratory response of a structural system is obtained in terms of nonlinear modal coordinates. As model

reduction is performed for linear systems, model reduction is also expected to be possibly achieved using the
nonlinear normal coordinates with the goal of employing the least number of nonlinear modes relative to

the number of linear modes needed to achieve a comparable accuracy in modal-type analyses of nonlinear

systems.

The case of a hinged–hinged uniform elastic beam carrying a lumped mass is discussed as an illustrative

example. The closed-form nonlinear modes are either individual, away from internal resonances, or reso-

nant, in the vicinity of three-to-one internal resonances. The differences between the linear normal modes

and their nonlinear companions are discussed. In the case of resonant nonlinear normal modes, the

bifurcation behavior is studied varying the internal detuning parameter.
The paper is organized as follows. In Sections 2–4, the asymptotic approach for generating the nonlinear

normal modes of general structures is presented. Section 5 shows the main results relating to the illustrative

problem; finally, the summary and concluding remarks are presented in Section 6.
2. General self-adjoint structural systems: computational approach

In this section, the asymptotic method of multiple scales is employed to construct the nonlinear normal

modes of multi-degree-of-freedom self-adjoint structures described by the following nondimensional vec-

tor-valued equation of motion:
M€xþ Kxþ K3ðx; x; xÞ þM3ðx; _x; _xÞ þM�
3ðx; x; €xÞ ¼ 0 ð1Þ
where M and K are N � N symmetric and positive-definite matrices representing the linear mass and

stiffness operators, respectively; x is the N � 1 vector of the nondimensional generalized coordinates; K3,

M3 and M�
3 are N � 1 noncommutative and multilinear operators which represent the nonlinear cubic

stiffness ðK3Þ and nonlinear inertia ðM3;M
�
3Þ, respectively; and the dot denotes differentiation with respect

to the nondimensional time t. While the geometric nonlinearities arise from the nonlinear strain–dis-

placement relations, the inertia nonlinearities of the assumed form are typical of inextensible systems. The

dynamic structural model represented by Eq. (1) is supposed to be accurate, kinematically and constitu-
tively, so as to be capable of capturing the physical structural behaviors under investigation also for high

frequencies.

Let B0 represent the linear modal tensor such that, introducing the transformation x ¼ B0q, the set of

equations (1) can be rewritten in the modal coordinates qj as
€qþ Kq ¼ G3ðq; q; qÞ þ I3ðq; _q; _qÞ þ I�3ðq; q; €qÞ ð2Þ
where
K ¼ BT
0KB0 ¼

x2
01 � � � 0

..

. . .
. ..

.

0 � � � x2
0n

2
64

3
75 ð3Þ
and B0 has been normalized such that BT
0MB0 ¼ I, with I being the identity tensor and T indicating the

transpose. The assumption that the frequencies are distinct has been made; moreover, G3ðq; q; qÞ ¼
�BT

0K3ðB0q;B0q;B0qÞ; I3ðq; _q; _qÞ ¼ �BT
0M3ðB0q;B0 _q;B0 _qÞ; I�3ðq; q; €qÞ ¼ �BT

0K3ðB0q;B0q;B0€qÞ.
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The second-order (in time) set of equations (2) can be conveniently reduced to a first-order system as

follows:
_q ¼ p

_pþ Kq ¼ G3ðq; q; qÞ þ I3ðq; p; pÞ þ I�3ðq; q; _pÞ
ð4Þ
Introducing a small dimensionless number � as an ordering device, a third-order expansion of the solutions

of (4) is sought in the form
q ¼ �q1ðT0; T1; T2Þ þ �2q2ðT0; T1; T2Þ þ �3q3ðT0; T1; T2Þ þ � � �
p ¼ �p1ðT0; T1; T2Þ þ �2p2ðT0; T1; T2Þ þ �3p3ðT0; T1; T2Þ þ � � �

ð5Þ
where T0 ¼ t is a fast scale characterizing motions occurring at one of the system natural frequencies x0k

and Tj ¼ �jt, j ¼ 1; 2, are the slow scales. In terms of Tj, the time derivative becomes
d

dt
¼ D0 þ �D1 þ �2D2 þ � � � ð6Þ
where Dj ¼ o=oTj.
Substituting (5) and (6) into (4) and equating the coefficients of like powers of � yields the following

hierarchy of linear problems:

Order �:
D0q1 � p1 ¼ 0

D0p1 þ Kq1 ¼ 0
ð7Þ
Order �2:
D0q2 � p2 ¼ �D1q1

D0p2 þ Kq2 ¼ �D1p1
ð8Þ
Order �3:
D0q3 � p3 ¼ �D1q2 � D2q1

D0p3 þ Kq3 ¼ �D1p2 � D2p1 þG3ðq1; q1; q1Þ þ I3ðq1; p1; p1Þ þ I�3ðq1; q1;D0p1Þ ð9Þ
In the next section, the individual nonlinear normal modes are obtained when the structure is away from

internal resonances and the resulting invariant manifolds are two-dimensional.
3. Individual nonlinear normal modes

Because we are interested in seeking approximations of the kth nonlinear normal mode when this mode

is away from internal resonances with other modes, the general solution of (7) can be expressed as
q1 ¼ AkðT1; T2Þeix0kT0uk þ cc

p1 ¼ ix0kAkðT1; T2Þeix0kT0uk þ cc
ð10Þ
where uk is the kth eigenvector in the linear modal space (i.e., ukj ¼ dkj with dkj denoting the Kronecker
delta), x0k is the kth linear frequency, i is the imaginary unit, and cc stands for the complex and conjugate

of the preceding terms.
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Then, substituting (10) into (8) yields
D0q2 � p2 ¼ � D1Akð Þeix0kT0uk þ cc

D0p2 þ Kq2 ¼ �ix0k D1Akð Þeix0kT0uk þ cc
ð11Þ
Since the homogeneous problem obtained from (11) admits nontrivial solutions, the solvability of (11) is

enforced requiring the orthogonality between the solution of the following adjoint homogeneous problem
D0q
� � Kp� ¼ 0

D0p
� þ q� ¼ 0

ð12Þ
and the inhomogeneous term of (11), g1 ¼ �½1; ix0k�TðD1AkÞeix0kT0uk þ cc.

Because the solution of the adjoint homogeneous problem (12) is
q�

p�

� �
¼
XN
j¼1

A�
j

ix0j

1

� �
e�ix0jT0uj þ cc ð13Þ
the orthogonality condition is
Z sk

0

gT1
q�

p�

� �
dT0 ¼ 0 ð14Þ
where sk is the kth period of oscillation. Equation (14) yields D1Ak ¼ 0. This implies that Ak does not depend

on the time scale T1; consequently, Ak ¼ AkðT2Þ.
Substituting (10) into (9), and accounting for D1Ak ¼ 0, yields
D0q3 � p3 ¼ �ðD2AkÞeix0kT0uk þ cc

D0p3 þ Kq3 ¼ �ix0kðD2AkÞeix0kT0uk þ 3G3ðuk; uk; ukÞ
�

þ x2
0kI3ðuk; uk; ukÞ � 3x2

0kI
�
3ðuk; uk; ukÞ

�
A2
kAke

ix0kT0

þ G3ðuk; uk; ukÞ
�

� x2
0kI3ðuk; uk; ukÞ � x2

0kI
�
3ðuk; uk; ukÞ

�
A3
ke

3ix0kT0 þ cc ð15Þ
where Ak stands for the complex and conjugate of Ak.

Imposing again the orthogonality between the solution of the adjoint homogeneous problem and the
inhomogeneous term of (15), the following modulation equation is obtained:
D2Ak ¼
Ckkk

2ix0k
A2
kAk ð16Þ
where
Ckkk ¼ 3uTkG3ðuk; uk; ukÞ þ x2
0ku

T
k I3ðuk; uk; ukÞ � 3x2

0ku
T
k I

�
3ðuk; uk; ukÞ ð17Þ
Substituting (16) into (15), the solution of the resulting equation can be expressed as
q3 ¼ z1e
ix0kT0A2

kAk þ z2e
3ix0kT0A3

k þ cc ð18Þ

p3 ¼ w1e
ix0kT0A2

kAk þ w2e
3ix0kT0A3

k þ cc ð19Þ

Thereafter, substituting (18) and (19) into (15), and equating the coefficients of expðix0kT0Þ and

expð3ix0kT0Þ separately to 0, yields
ix0kz1 � w1 ¼ � Ckkk

2ix0k
uk ð20Þ

3ix0kz2 � w2 ¼ 0 ð21Þ
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ix0kw1 þ Kz1 ¼ �Ckkk

2
uk þ 3G3ðuk; uk; ukÞ þ x2

0kI3ðuk; uk; ukÞ � 3x2
0kI

�
3ðuk; uk; ukÞ ð22Þ

3ix0kw2 þ Kz2 ¼ G3ðuk; uk; ukÞ � x2
0kI3ðuk; uk; ukÞ � x2

0kI
�
3ðuk; uk; ukÞ ð23Þ
Next, the orthogonality is imposed between the solution of the adjoint homogeneous problem and the

component of the third-order solution (18) and (19) which is proportional to expðix0kT0Þ. More concisely,

this solvability condition can be written as
ix0ku
T
k uTk

� � z1
w1

� �
¼ 0 ð24Þ
Substituting Eq. (20) into (24) gives uTk z1 ¼ Ckkk=ð4x2
0kÞ. Consequently, using Eq. (22) gives
z1 ¼
Ckkk

4x2
0k

uk þ
XN

j¼1;j6¼k

Cjkuj; w1 ¼ ix0k

 
� Ckkk

4x2
0k

uk þ
XN

j¼1;j 6¼k

Cjkuj

!
ð25Þ
where
Cjk ¼
3uTj G3ðuk; uk; ukÞ þ x2

0ku
T
j I3ðuk; uk; ukÞ � 3x2

0ku
T
j I

�
3ðuk; uk; ukÞ

x2
0j � x2

0k

ð26Þ
Solving (21) and (23) for z2 and w2 yields
z2 ¼
XN
j¼1

Djkuj; w2 ¼ 3ix0k

XN
j¼1

Djkuj ð27Þ
where
Djk ¼
uTj G3ðuk; uk; ukÞ � x2

0ku
T
j I3ðuk; uk; ukÞ � x2

0ku
T
j I

�
3ðuk; uk; ukÞ

x2
0j � 9x2

0k

ð28Þ
Finally, substituting (25) and (27) into (18) and (19), the solution of the third-order problem takes the

form
q3 ¼
Ckkk

4x2
0k

uk

 
þ
XN

j¼1;j 6¼k

Cjkuj

!
eix0kT0A2

kAk þ
XN
j¼1

Djkuj

 !
e3ix0kT0A3

k þ cc ð29Þ

p3 ¼ ix0k

 
� Ckkk

4x2
0k

uk þ
XN

j¼1;j 6¼k

Cjkuj

!
eix0kT0A2

kAk þ 3ix0k

XN
j¼1

Djkuj

 !
e3ix0kT0A3

k þ cc ð30Þ
Inserting the polar form for Ak, AkðT2Þ ¼ ð1=2ÞakðT2Þ expði/ðT2ÞÞ, into (16) and separating real and
imaginary parts yields
D2ak ¼ 0; D2/k ¼ � 1

8x0k
Ckkka2k ð31Þ
The first equation expresses the circumstance that the amplitude is constant with respect to the slow scale

T2, whilst integrating the latter furnishes the effect of the nonlinearity on the frequency as
/k ¼ � 1

8x0k
Ckkka2k�

2t þ /0k ð32Þ
where /0k is a constant phase depending on the initial conditions.
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Substituting (32) into (10), and using the polar form, gives
q1 ¼ ak cosðxkt þ /0kÞuk ¼ ak cos hkuk ð33Þ
where xk is the nonlinear frequency of the kth individual nonlinear normal mode expressed as
xk ¼ x0k � akkk�
2a2k ð34Þ
where akkk ¼ Ckkk=ð8x0kÞ is known as the effective nonlinearity coefficient and regulates the bending of the

backbone of the mode (the curve representing the oscillation frequency versus the amplitude). Substituting

(29), (30) and (33) into (5) leads to
q ¼ �ak uk

"
þ �2

1

4
a2k

Ckkk

4x2
0k

uk

 
þ
XN

j¼1;j 6¼k

Cjkuj

!#
cos hk þ �3

1

4
a3k

XN
j¼1

Djkuj

 !
cos 3hk þ � � � ð35Þ

p ¼ ��x0kak uk

"
þ �2

1

4
a2k

 
� Ckkk

4x2
0k

uk þ
XN

j¼1;j6¼k

Cjkuj

!#
sin hk � �3x0k

3

4
a3k

XN
j¼1

Djkuj

 !
sin 3hk þ � � �

ð36Þ
Considering that ukj ¼ dkj, Eqs. (35) and (36) can be rewritten in scalar form as
qk ¼ �ak 1

�
þ 1

16

Ckkk

x2
0k

�2a2k

�
cos hk þ

1

4
�3a3kDkk cos 3hk þ � � � ð37Þ

pk ¼ ��x0kak 1

�
� 1

16

Ckkk

x2
0k

�2a2k

�
sin hk �

3

4
�3a3kx0kDkk sin 3hk þ � � � ð38Þ

qj ¼ 1
4
�3a3k Cjk cos hk

�
þDjk cos 3hk

�
þ � � � ; j 6¼ k ð39Þ

pj ¼ �x0k
1
4
�3a3k Cjk sin hk

�
þ 3Djk sin 3hk

�
þ � � � ; j 6¼ k ð40Þ
The two-dimensional invariant manifold associated with the kth individual nonlinear normal mode is found

in modal coordinates once the generalized coordinates qj and pj are expressed in terms of the ‘master’

coordinates qk and pk. The manifold takes the form
qj ¼
1

4
ðCjk

�
þDjkÞq3k þ ðCjk � 3DjkÞ

qkp2k
x2

0k

�
þ � � � ð41Þ

pj ¼
1

4
ðCjk

�
� 3DjkÞ

p3k
x2

0k

þ ðCjk þ 9DjkÞq2kpk
�
þ � � � ð42Þ
To express the manifold in the original physical coordinates instead of the linear modal coordinates, Eqs.

(41) and (42) are substituted into the transformations x ¼ B0q and y ¼ B0p. Consequently,
x � qkb0k þ
XN

j¼1;j 6¼k

1

4
ðCjk

�
þDjkÞq3k þ ðCjk � 3DjkÞ

qkp2k
x2

0k

�
b0j ð43Þ

y � pkb0k þ
XN

j¼1;j 6¼k

1

4
ðCjk

�
� 3DjkÞ

p3k
x2

0k

þ ðCjk þ 9DjkÞq2kpk
�
b0j ð44Þ



5572 W. Lacarbonara, R. Camillacci / International Journal of Solids and Structures 41 (2004) 5565–5594
where b0j is the jth physical linear eigenvector. Letting qkðt0Þ ¼ ak and pkðt0Þ ¼ 0 into (43) and (44), and

dividing the result by ak so as to ‘normalize’ the shape, the approximate kth nonlinear mode shape is

obtained in the form
bk � b0k þ a2k
XN

j¼1;j 6¼k

1

4
ðCjk þDjkÞb0j ð45Þ
Assuming, for sake of conciseness, geometric nonlinearities only (i.e., I3 ¼ I�3 ¼ 0), the closed-form non-
linear mode shape becomes
bk � b0k þ a2k
XN

j¼1;j 6¼k

1

4

3

x2
0j � x2

0k

 "
þ 1

x2
0j � 9x2

0k

!
uTj G3ðuk; uk; ukÞ

#
b0j ð46Þ
Inspection of Eq. (46) allows to ascertain that (i) the individual NNM’s break down when x0j � x0k (1:1

internal resonance) or x0j � 3x0k (3:1 internal resonance) and (ii) the nonlinear corrections to the kth linear
mode shape depend quadratically on ak––as in the nonlinear frequency xk in Eq. (34). The strength of

the second-order contribution of the jth linear mode is regulated by the participation factor enclosed in the

square brackets in Eq. (46). This coefficient is proportional to 3ðx2
0j � x2

0kÞ
�1 þ ðx2

0j � 9x2
0kÞ

�1
and to the

virtual work of the nonlinear structural force associated with the kth mode in the displacement of the jth
mode. On the other hand, the leading nonlinear frequency correction term is proportional to

akkk ¼ 3uTkG3ðuk; uk; ukÞ=ð8x0kÞ, which, in turn, is proportional to the virtual work of the nonlinear struc-

tural force associated with the kth mode in the displacement of the kth mode itself.

Inspection of Eqs. (43) and (44) allows to draw some general conclusions about the signatures of the

individual NNM’s. We observe that when Cjk ¼ Djk ¼ 0, for all j, then Eqs. (43) and (44) reduce to

x � qkb0k and y � pkb0k. Since the resulting dependence of the system phase state on the master coordinates

qk and pk is linear, these individual NNM’s belong to the class of similar nonlinear normal modes
(Rosenberg, 1962, 1966).

Considering again, for simplicity, the case of geometric nonlinearities only, the condition for similar

normal modes, i.e., Cjk ¼ Djk ¼ 0, implies uTj G3ðuk; uk; ukÞ ¼ 0. This condition possesses a clear mechanical

meaning: the leading nonlinear structural force associated with the kth mode does not perform work in the

virtual displacement of the jth mode, for all j 6¼ k. Therefore, there cannot be corrections from the other

modes to the kth linear normal mode.

It is useful to see how to exploit the presented results when dealing with spatially continuous systems.

Employing the discretization approach, the distributed-parameter system is transformed into a discrete
system. Following the same line of analysis used for discrete structural systems, one viable strategy is to

seek the nonlinear normal modes as a superposition of the linear normal modes UjðxÞ as
vðx; tÞ �
XN
j¼1

qjðtÞUjðxÞ ð47Þ
where vðx; tÞ is the unknown displacement, qj is the linear modal coordinate and N is the number of linear

modes retained in the discretization process. Then, using, e.g., the Galerkin method to minimize the

residuals, the discretized equations in the modal coordinates are obtained in the form of Eq. (2). Thereafter,

assuming as initial conditions qkðt0Þ ¼ ak, pkðt0Þ ¼ 0, and substituting (41) and (42) into (47), the kth
nonlinear mode shape can be expressed as vkðx; t0Þ � akUkðxÞ þ 1=4a3k

PN
j¼1;j 6¼k Cjk þDjk

� �
UjðxÞ. Next,

dividing the obtained function by ak, so as to normalize the mode shape with respect to ak, yields the
following nonlinear mode shape:
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WkðxÞ � UkðxÞ þ a2k
XN

j¼1;j6¼k

1

4
Cjk

�
þDjk

�
UjðxÞ ð48Þ
4. Resonant nonlinear normal modes

When two or more frequencies are commensurable with an appropriate integer ratio, the structure may

experience internal resonances. When such a condition occurs, an energy exchange between the two (or

more) resonant modes is observed. Hence, the general solution presented in the previous section must be

modified in order to account for the modal interaction.

Assuming that two arbitrary frequencies, x0m and x0n, are commensurable, the first-order solution of (7)

is replaced by
q1 ¼ Ame
ix0mT0um þ Ane

ix0nT0un þ cc ð49Þ

p1 ¼ ix0mAme
ix0mT0um þ ix0nAne

ix0nT0un þ cc ð50Þ
Since the problem at order �2 is empty as shown in Section 3, Am ¼ AmðT2Þ and An ¼ AnðT2Þ. Equations (49)
and (50) are substituted into the third-order problem which, in turn, becomes
D0q3 � p3 ¼ �ðD2AmÞeix0mT0um � ðD2AnÞeix0nT0un þ cc ð51Þ

D0p3 þ Kq3 ¼ �ix0mðD2AmÞeix0mT0um � ix0nðD2AnÞeix0nT0un þ
X
k¼m;n

akkkA2
kAke

ix0kT0

þ
X
k¼m;n

bkkkA3
ke

3ix0kT0 þ RmnAmAnAne
ix0mT0 þ RnmAnAmAme

ix0nT0 þ SmnAnA
2

me
iðx0n�2x0mÞT0

þ SnmA2
nAme

ið2x0n�x0mÞT0 þ cc ð52Þ
where
akkk ¼ 3G3ðuk; uk; ukÞ þ x2
0kI3ðuk; uk; ukÞ � 3x2

0kI
�
3ðuk; uk; ukÞ ð53Þ

bkkk ¼ G3ðuk; uk; ukÞ � x2
0kI3ðuk; uk; ukÞ � x2

0kI
�
3ðuk; uk; ukÞ ð54Þ

Rmn ¼ 2G3ðum; un; unÞ þ 2G3ðun; um; unÞ þ 2G3ðun; un; umÞ þ 2x2
0nI3ðum; un; unÞ � 2x2

0nI
�
3ðum; un; unÞ

� 2x2
0mI

�
3ðun; un; umÞ � 2x2

0nI
�
3ðun; um; unÞ ð55Þ

Rnm ¼ 2G3ðun; um; umÞ þ 2G3ðum; un; umÞ þ 2G3ðum; um; unÞ þ 2x2
0mI3ðun; um; umÞ

� 2x2
0mI

�
3ðun; um; umÞ � 2x2

0nI
�
3ðum; um; unÞ � 2x2

0mI
�
3ðum; un; umÞ ð56Þ

Smn ¼ G3ðum; um; unÞ � x2
0mI3ðun; um; umÞ þ x0nx0m I3ðum; un; umÞð þ I3ðum; um; unÞÞ

� x2
0mI

�
3ðun; um; umÞ � x2

0nI
�
3ðum; um; unÞ � x2

0mI
�
3ðum; un; umÞ ð57Þ

Snm ¼ G3ðun; un; umÞ � x2
0nI3ðum; un; unÞ þ x0nx0m I3ðun; um; unÞð þ I3ðun; un; umÞÞ

� x2
0nðI�3ðum; un; unÞ þ I�3ðun; um; unÞÞ � x2

0mI
�
3ðun; un; umÞ ð58Þ
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In the following, a typical internal resonance for systems with cubic nonlinearities is considered, namely,

a three-to-one internal resonance. To describe quantitatively the nearness of x0m and x0n, the detuning

parameter r is introduced as
x0n ¼ 3x0m þ �2r ð59Þ

Imposing separately the two orthogonality conditions between the solutions of the adjoint homogeneous

problem and the inhomogeneous terms of (51) and (52), the following modulation equations are obtained:
D2Am ¼ 1

2ix0m
CmmmA2

mAm

h
þ ðuTmRmnÞAmAnAn þ ðu>mSmnÞAnA

2

me
irT2
i

ð60Þ

D2An ¼
1

2ix0n
CnnnA2

nAn þ ðuTnRnmÞAnAmAm þ ðuTn bmmmÞA3
me

�irT2
h i

ð61Þ
where Cjjj ¼ uTj ajjj, with j ¼ m; n, and is explicitly given by Eq. (17).

Substituting (60) and (61) into (51) and (52), the solution at order �3 is sought in the form
q3 ¼ z1AmAnAne
ix0mT0 þ z2AnAmAme

ix0nT0 þ z3A2
mAme

ix0mT0 þ z4A2
nAne

ix0nT0 þ z5AnA
2

me
iðx0n�2x0mÞT0

þ z6A2
nAme

ið2x0n�x0mÞT0 þ z7A3
me

3ix0mT0 þ z8A3
ne

3ix0nT0 þ cc ð62Þ

p3 ¼ i ~w1AmAnAne
ix0mT0

h
þ ~w2AnAmAme

ix0nT0 þ ~w3A2
mAme

ix0mT0 þ ~w4A2
nAne

ix0nT0 þ ~w5AnA
2

me
iðx0n�2x0mÞT0

þ ~w6A2
nAme

ið2x0n�x0mÞT0 þ ~w7A3
me

3ix0mT0 þ ~w8A3
ne

3ix0nT0
i
þ cc ð63Þ
Inserting (62) and (63) into (51) and (52), and equating the coefficients of like harmonic terms to 0, a set of

16 algebraic problems is obtained as reported, along with the solutions, in Appendix A.

Expressing Am and An in polar forms
AmðT2Þ ¼ 1
2
amðT2Þei/mðT2Þ and AnðT2Þ ¼ 1

2
anðT2Þei/nðT2Þ ð64Þ
and substituting them into the modulation equations (60) and (61), and separating real and imaginary

parts, yields
D2am ¼
uTmSmn

� �
8x0m

ana2m sin c ð65Þ

D2an ¼ �
uTn bmmm
� �
8x0n

a3m sin c ð66Þ

amD2/m ¼ �Cmmm

8x0m
a3m �

uTmRmn

� �
8x0m

a2nam �
uTmSmn

� �
8x0m

ana2m cos c ð67Þ

anD2/n ¼ � Cnnn

8x0n
a3n �

uTnRnm

� �
8x0n

a2man �
uTn bmmm
� �
8x0n

a3m cos c ð68Þ
where c ¼ rT2 þ /n � 3/m is the relative phase.

The modulation equations (60) and (61), cast in Cartesian form, can describe a wide range of motions,

including also quasiperiodic and chaotic motions. Here, we are specifically interested in periodic motions

whereby the nonlinear frequencies of the interacting modes lock into an integer ratio equal to 3. The local
bifurcations of these motions indicate the post-critical responses bifurcating from them although these do

not cover the full range of solutions which could be captured by a global analysis only. Moreover, the
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periodic motions provide an underlying ‘skeleton’ structure to the system behavior also in the presence of

weak damping and forcing.

Seeking periodic structural motions, am and an must be constant; hence, D2am ¼ D2an ¼ 0 and Eqs. (65)

and (66) are satisfied when (a) am ¼ 0 and an 6¼ 0 and (b) ðam; anÞ 6¼ ð0; 0Þ and sin c ¼ 0 because (uTmSmn) and
(uTn bmmm) are assumed different from 0. The first case corresponds to the uncoupled high-frequency mode

whereas case (b) yields coupled modes. For coupled modes, c ¼ kp, with k ¼ 0;�1;�2; . . . The third

independent equation governs the modulation of the relative phase and is obtained as
D2c ¼ rþ D2/n � 3D2/m ð69Þ

Dividing (67) and (68) by am and an, respectively, and substituting the resulting expressions into (69), and

letting D2c ¼ 0, leads to
D2c ¼
3Cmmm

8x0m

�
�

uTnRnm

� �
8x0n

�
a2m þ

3uTmRmn

� �
8x0m

�
� Cnnn

8x0n

�
a2n þ

3uTmSmn

� �
8x0m

ðcos cÞanam

�
uTn bmmm
� �
8x0n

ðcos cÞ a
3
m

an
þ r ¼ 0 ð70Þ
Dividing (70) by a2n, the following equation is obtained:
uTn bmmm
� �
8x0n

ðcos cÞc3 þ
uTnRnm

� �
8x0n

�
� 3Cmmm

8x0m

�
c2 �

3uTmSmn

� �
8x0m

ðcos cÞcþ Cnnn

8x0n

�
�

3uTmRmn

� �
8x0m

�
� r� ¼ 0

ð71Þ

where c ¼ am=an and r� ¼ r=a2n. Since it is c ¼ kp, cos c ¼ �1; however, as shown in (Lacarbonara et al.,
2003) equations of type (71), with c ¼ kp, possess at most three solutions. Therein, it is also demonstrated

that if
uTn bmmm ¼ 0 ð72Þ

the two modes under investigation are orthogonal and, hence, they do not interact.

Among all of the solutions of (71), one needs to distinguish those that are stable from those that are

unstable. This can be achieved calculating the eigenvalues of the following Jacobian matrix:
Jðam; an; cÞ ¼

oðD2amÞ
oam

oðD2amÞ
oan

oðD2amÞ
oc

oðD2anÞ
oam

oðD2anÞ
oan

oðD2anÞ
oc

oðD2cÞ
oam

oðD2cÞ
oan

oðD2cÞ
oc

2
64

3
75 ð73Þ
Using Eqs. (65), (66) and (70), Eq. (73) becomes
J ¼
0 0 v1
0 0 v2
v3 v4 0

2
4

3
5 ð74Þ
where
v1 ¼
uTmSmn

� �
8x0m

ana2m; v2 ¼ �
uTn bmmm
� �
8x0n

a3m;

v3 ¼ 2
3Cmmm

8x0m

�
�

uTnRnm

� �
8x0n

�
am þ

3uTmSmn

� �
8x0m

an � 3
uTn bmmm
� �
8x0n

a2m
an

;

v4 ¼ 2
3uTmRmn

� �
8x0m

�
� Cnnn

8x0n

�
an þ

3uTmSmn

� �
8x0m

am þ
uTn bmmm
� �
8x0n

a3m
a2n
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The eigenvalues of (74), on account of the fact that the first- and third-order invariants of the Jacobian

matrix (74) are 0, are expressed as
k1 ¼ 0; k2;3 ¼ �
ffiffiffiffiffiffiffiffi
�I2

p
ð75Þ
where I2 ¼ �ðv2v4 þ v3v1Þ is the second-order invariant. In order to have marginally stable solutions, k2;3
must be imaginary, that is, I2 > 0, equivalently ðv2v4 þ v3v1Þ < 0. Consequently, the modes are unstable

when I2 < 0, that is ðv2v4 þ v3v1Þ > 0. This condition can be rewritten as
uTn bmmm

8x0n

� �2

c4 þ 2
uTn bmmm

8x0n

� �
3uTmSmn

8x0m

� �
c2 þ 2

uTn bmmm

8x0n

� �
3uTmRmn

8x0m

��
� Cnnn

8x0n

�

� uTmSmn

8x0m

� �
3Cmmm

8x0m

�
� uTnRnm

8x0n

��
c� uTmSmn

8x0m

� �
3uTmSmn

8x0m

� �
< 0 ð76Þ
Solving the inequality (76) gives the range of c where the solution becomes unstable.

Next, the displacement and velocity vectors are cast in real form. Integrating (67) and (68), the phases /m

and /n are obtained as
/m ¼ � 1

8x0m
�2 Cmmma2m
�

þ uTmRmn

� �
a2n þ uTmSmn

� �
anamðcos cÞ

�
t þ /0m ð77Þ

/n ¼ � 1

8x0n
�2 Cnnna2n

�
þ uTnRnm

� �
a2m þ uTn bmmm

� � a3m
an

ðcos cÞ
�
t þ /0n ð78Þ
where /0m and /0n are constant phases which depend on the initial conditions.

Substituting (77) and (78) into (64) and then into (49) and (50) yields
q1 ¼ am cos hmum þ an cos hnun; p1 ¼ �x0mam sin hmum � x0nan sin hnun ð79Þ

where hk ¼ xkt þ /0k, with k ¼ m; n, and the nonlinear frequencies are expressed as
xm ¼ x0m � 1

8x0m
�2a2n Cmmmc2

�
þ uTmSmn

� �
ðcos cÞcþ uTmRmn

� ��
þ � � � ð80Þ

xn ¼ 3x0m þ �2a2n r�



� 1

8x0n
uTn bmmm
� �

ðcos cÞc3
�

þ uTnRnm

� �
c2 þ Cnnn

��
þ � � � ð81Þ
where c ¼ am=an. Substituting the normalized detuning r� given by Eq. (71) into (81), it can be shown that

xn ¼ 3xm. That is, the nonlinear resonance tunes the phases of the modes so as to render the ratio between

the nonlinear frequencies exactly equal to 3.

Substituting (77) and (78) into (64) and then into (49) and (50), using (5) and (79) yields
q � am cos hmum þ an cos hnun þ 1
4
ðz1a2n þ z3a2mÞam cos hm þ 1

4
ðz2a2m þ z4a2nÞan cosð3hm þ cÞ

þ 1
4
z5a2man cosðhm þ cÞ þ 1

4
z6ama2n cosð5hm þ 2cÞ þ 1

4
z7a3m cos 3hm þ 1

4
z8a3n cosð9hm þ 3cÞ ð82Þ

p � �x0mam sin hmum � x0nan sin hnun � 1
4
ð~w1a2n þ ~w3a2mÞam sin hm � 1

4
ð~w2a2m þ ~w4a2nÞan sinð3hm þ cÞ

� 1
4
~w5a2man sinðhm þ cÞ � 1

4
~w6ama2n sinð5hm þ 2cÞ � 1

4
~w7a3m sin 3hm � 1

4
~w8a3n sinð9hm þ 3cÞ ð83Þ
From Eqs. (82) and (83), the mth, nth and jth components of q and p can be explicitly written as
qm ¼ �am cos hm þ � � � ; pm ¼ ��x0mam sin hm þ � � � ð84Þ

qn ¼ �an cosð3hm þ cÞ þ � � � ; pn ¼ ��x0nan sinð3hm þ cÞ þ � � � ð85Þ
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qj ¼ �3 ðr1ja2n
�

þ r3ja2mÞam cos hm þ ðr2ja2m þ r4ja2nÞan cosð3hm þ cÞ þ r5ja2man cosðhm þ cÞ
þ r6ja2nam cosð5hm þ 2cÞ þ r7ja3m cos 3hm þ r8ja3n cosð9hm þ 3cÞ

�
þ � � � ð86Þ
pj ¼ �3 ðs1ja2n
�

þ s3ja2mÞam sin hm þ ðs2ja2m þ s4ja2nÞan sinð3hm þ cÞ þ s5ja2man sinðhm þ cÞ
þ s6ja2nam sinð5hm þ 2cÞ þ s7ja3m sin 3hm þ s8ja3n sinð9hm þ 3cÞ

�
þ � � � ð87Þ
where the coefficients rij and sij, i ¼ 1 � � � 8, are reported in Appendix A.

Using Eqs. (84)–(87) and trigonometric identities to express qj and pj in terms of qm, qn, pm, and pn, the
four-dimensional invariant manifold of the two resonant nonlinear normal modes is obtained as:
qj ¼ a1jp2mqm þ a2jqmpmpn þ a3jp2nqm þ amjq3m þ a5jqnp2m þ a6jqnpmpn þ a7jp2nqn þ anjq3n þ � � � ð88Þ
pj ¼ bmjp
3
m þ b2jp

2
mpn þ b3jpmp

2
n þ bnjp

3
n þ b5jq

2
mpm þ b6jqmqnpm þ b7jqmqnpn þ b8jpnq

2
n þ � � � ð89Þ
where the coefficients aij and bij, i ¼ 1 � � � 8, are reported in Appendix A.

Next, the manifold is expressed in the physical coordinate space substituting Eqs. (88) and (89) into the

transformations x ¼ B0q and y ¼ B0p thereby obtaining
x � ðqmb0m þ qnb0nÞ þ
XN

j¼1;j 6¼m;n

a1jp2mqm
�

þ a2jqmpmpn þ a3jp2nqm þ amjq3m þ a5jqnp2m þ a6jqnpmpn

þ a7jp2nqn þ anjq3n
�
b0j ð90Þ
y � ðpmb0m þ pnb0nÞ þ
XN

j¼1;j 6¼m;n

bmjp
3
m

�
þ b2jp

2
mpn þ b3jpmp

2
n þ bnjp

3
n þ b5jq

2
mpm þ b6jqmqnpm

þ b7jqmqnpn þ b8jpnq
2
n

�
b0j ð91Þ
Then, the nonlinear resonant mode shapes can be obtained putting qmðt0Þ ¼ am, qnðt0Þ ¼ an and

pmðt0Þ ¼ pnðt0Þ ¼ 0 into Eqs. (90) and (91). The resulting nonlinear modes can be normalized with respect to
the amplitude of the high-frequency mode, an. Therefore,
bmn � cb0mð þ b0nÞ þ a2n
XN

j¼1;j 6¼m;n

c3amj
�

þ anj
�
b0j ð92Þ
where bmn ¼ x=an and y ¼ 0.

Considering a distributed-parameter system and employing the discretization approach, the resonant
NNM’s can be obtained substituting (88) and (89) into (47). Dividing the result by an yields the normalized

resonant nonlinear mode shapes in the form
WmnðxÞ ¼ cUmðxÞ þ UnðxÞ þ a2n
XN

j¼1;j 6¼m;j 6¼n

1

4
c3

uTj ammm

x2
0j � x2

0m

"(
þ

uTj bmmm

ðx2
0j � 9x2

0mÞ

#

þ
uTj annn

x2
0j � x2

0n

"
þ

uTj bnnn

x2
0j � 9x2

0n

#)
UjðxÞ ð93Þ
where the bracketed expression is the extended form of ðc3amj þ anjÞ.
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5. Illustrative example

In this section, the general theoretical results are applied to an illustrative example: a hinged–hinged

uniform, linearly elastic, beam with a lumped mass m rigidly attached at an arbitrary location denoted with
x�1 (the star indicates dimensional variables). The geometry of the beam is pictured in Fig. 1. It is supposed

that (i) the beam oscillates in the initial rest plane with moderately large transverse deflections (shallow

configurations); (ii) the constraints act as perfect fixed hinges; (iii) Euler–Bernoulli linear bending theory

holds; (iv) no initial conditions are prescribed in the longitudinal direction. As a result of assumptions (i)

and (iv), the axial strain �0 of the beam centerline due to the transverse displacement v is constant along the

beam span and is computed as follows (Mettler, 1962):
�0 ¼
1

2‘

Z ‘

0

ðv�0 Þ2 dx� ð94Þ
where ‘ is the beam undeformed length and the prime indicates differentiation with respect to the coor-

dinate x�.
The beam elastic potential energy is given by both the bending and axial deformation energies and can be

written as
V ½v�ðx�; t�Þ� ¼ 1

2

Z ‘

0

EIðv�00 Þ2 dx� þ 1

8l2

Z ‘

0

EA
Z ‘

0

v�
0

� 
2
dx�

� �2

dx� ð95Þ
where E is Young modulus, A is the area of the cross-section, and I denotes the moment of inertia about one

of the principal axes of inertia.

On the other hand, the kinetic energy is given by
T ¼ 1

2

Z ‘

0

qA _v�
� 
2

dx� þ 1

2
m _v�ðx�1Þ
� 
2

ð96Þ
where q is the beam mass density, m is the lumped mass, and the dot indicates differentiation with respect to
the dimensional time t�.

The linear eigenvalue problem yielding the natural frequencies and the associated linear normal modes is

solved assuming the solutions in the form
v�ðx�; t�Þ �
XN�

j¼1

g�j ðt�Þ sin jp
x�

‘
ð97Þ
where N � is the number of discretizing admissible functions. Substituting (97) and its derivatives into (95)

and (96), neglecting nonlinear terms and writing the Euler–Lagrange equations associated with the system

Lagrangian, L ¼ T � V , yields a set of ordinary-differential equations where the jth equation in the gen-

eralized coordinates gk is
1x

m u vx

y

Fig. 1. The hinged–hinged beam geometry with the lumped mass.
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qA‘€g�j þ 2m
XN�

k¼1

€g�k sin kp
x�1
‘

 !
sin jp

x�1
‘
þ EI

‘3
p4j4g�j ¼ 0 ð98Þ
To render the equations nondimensional, we introduce the following nondimensional variables and
parameters: x ¼ x�=‘, v ¼ v�=‘, x1 ¼ x�1=‘, t ¼ xbt�, xb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðqA‘4Þ

p
, and l ¼ m=ðqA‘Þ. Then, Eq. (98) can

be rewritten in nondimensional form as
€gj þ 2l
XN�

k¼1

€gk sin kpx1

 !
sin jpx1 þ p4j4gj ¼ 0 ð99Þ
In turn, the set of equations (99) is rewritten in matrix form as
M€gþ Kg ¼ 0 ð100Þ
whereM and K are the N � � N � mass and stiffness matrices, respectively. Seeking periodic and synchronous

motions, we let g ¼ expðixtÞu and obtain the algebraic eigenvalue problem in the standard form
K
�

� x2M
�
u ¼ 0 ð101Þ
where (x; u) is the eigenpair. The beam mode shapes are then expressed as
UjðxÞ ¼
XN�

k¼1

ujk sin kpx ð102Þ
In Fig. 2, variation of the lowest seven calculated nondimensional natural frequencies with the nondi-

mensional mass position x1 is shown when the mass ratio is l ¼ 10. Because the kth linear mode of the beam

without the lumped mass possesses ðk � 1Þ nodes of vibration at xn ¼ 1=k; 2=k; . . . ; ðk � 1Þ=k, when the

lumped mass position is x1 ¼ xn, the corresponding beam frequency is not affected by the lumped mass as
confirmed by the numerical results in Fig. 2. Further, inspecting Fig. 2, it is worth noting that, as expected,
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. Variation of the lowest seven nondimensional natural frequencies with x1 when l ¼ 10. The frequency axis is in log scale.



Table 1

Some cases where three-to-one internal resonances may occur

m; n x0k l x1

1; 2 x02 ¼ 3x01 ¼ 21:00 10 ð0:0637; 0:9363Þ
3; 5 x05 ¼ 3x03 ¼ 226:70 10 ð0:2335; 0:7665Þ
2; 3 x03 ¼ 3x02 ¼ 88:50 10 ð0:3432; 0:6568Þ
4; 7 x07 ¼ 3x04 ¼ 473:74 0.024 0.5
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no one-to-one internal resonances occur, while a few three-to-one internal resonances may occur. In
Table 1, there are reported the values of the mass ratio l and mass position x1 for which three-to-one

internal resonances are possible.

As already mentioned in Sections 2 and 3, the nonlinear normal modes are sought as a superposition of

the linear normal modes in the form given by (47). Substituting (47) into the system Lagrangian and writing

the associated Euler–Lagrange equations, the nonlinear problem is cast in the form of Eq. (2) where the ith
equation, in nondimensional form, is
Table

Nonlin

k

1

2

3

4

5

6

€qi þ x2
0iqi ¼ � k2

2

XN
j¼1

XN
k¼1

XN
h¼1

qjqkqh

Z 1

0

U0
jðxÞU0

kðxÞdx
� � Z 1

0

U0
hðxÞU0

iðxÞdx
� �

ð103Þ
Here, k is the beam slenderness defined as k ¼ ‘=r, with r ¼
ffiffiffiffiffiffiffiffi
I=A

p
denoting the radius of gyration of the

cross-section.

The individual mode shapes are expressed by (48) whereas the resonant nonlinear mode shapes are given

by (93).

5.1. Individual nonlinear normal modes

Three meaningful cases of individual NNM’s are considered in the following: (i) l ¼ 0 (beam without

lumped mass); (ii) l ¼ 10 and x1 ¼ 0:5; (iii) l ¼ 10 and x1 ¼ 0:25. Solving the linear eigenvalue problem

with N � ¼ 20, the nonlinear frequencies of the lowest six modes have been computed according to Eq. (34)

and are reported in Tables 2–4. Clearly, the nonlinear frequencies, to within second order, depend on the

square of the oscillation amplitude and the beam slenderness. The curves representing variation of the

nonlinear frequencies with the amplitude, the so-called backbone curves, are shown for case (i) and k ¼ 30
in Fig. 3. In the same figure, representative frequency–response curves are depicted considering weak

harmonic forcing and viscous linear damping. The case of weak forcing and light viscous damping can be

easily treated letting the forcing and damping terms appear at third order in Eq. (9). It is to be noted that all

of the curves, as expected, are bent to the right indicating a hardening behavior (i.e., the oscillation fre-

quency increases with the amplitude). Subsequently, the nonlinear mode shapes have been computed

according to Eq. (48) with N ¼ 10.
2

ear frequency laws for the lowest six modes when l ¼ 0

xk

x1 ¼ 9:87þ 0:46k2a21
x2 ¼ 39:48þ 1:85k2a22
x3 ¼ 88:83þ 4:16k2a23
x4 ¼ 157:91þ 7:40k2a24
x5 ¼ 246:74þ 11:57k2a25
x6 ¼ 355:30þ 16:65k2a26



Table 3

Nonlinear frequency laws for the lowest six modes when l ¼ 10 and x1 ¼ 0:5

k xk

1 x1 ¼ 2:14þ 0:0046k2a21
2 x2 ¼ 39:48þ 1:85k2a22
3 x3 ¼ 62:64þ 1:67k2a23
4 x4 ¼ 157:91þ 7:40k2a24
5 x5 ¼ 202:72þ 7:28k2a25
6 x6 ¼ 355:30þ 16:65k2a26

Table 4

Nonlinear frequency laws for the lowest six modes when l ¼ 10 and x1 ¼ 0:25

k xk

1 x1 ¼ 2:81þ 0:009k2a21
2 x2 ¼ 24:17þ 0:70k2a22
3 x3 ¼ 78:46þ 3:24k2a23
4 x4 ¼ 157:91þ 7:40k2a24
5 x5 ¼ 213:73þ 7:72k2a25
6 x6 ¼ 309:42þ 12:70k2a26

Fig. 3. Backbones of the lowest six modes and representative frequency–response curves when l ¼ 0.
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The case with l ¼ 0 corresponds to the simply supported uniform beam whose modes are an infinite
sequence of symmetric and skew-symmetric modes. Using Eqs. (26) and (28), it turns out that the coeffi-

cients Cjk and Djk are 0 for any j and k; this is due to the fact that the work done by the nonlinear restoring



Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Fig. 4. The lowest six linear normal modes (thin line) and the corresponding individual nonlinear normal modes (thick line) when

l ¼ 0.
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force associated with one mode in the virtual displacement associated with any of the other modes vanishes.

Consequently, Eq. (48) yields bk ¼ b0k for any k and no difference between the linear and nonlinear modes

occurs as confirmed in Fig. 4. The ensuing modes are similar nonlinear normal modes. It is worth noting that

this result was obtained by Rosenberg (1966) in the general context of homogeneous mechanical systems

(i.e., arrays of equal masses and nonlinear springs).

In the same way, both the nonlinear frequencies and corresponding mode shapes have been computed

for the second sample beam when l ¼ 10 and x1 ¼ 0:5. The lowest six calculated backbones are reported in
Table 3 and a representation of them, for k ¼ 30, is given in Fig. 5 along with some frequency–response

curves. On the other hand, in Fig. 6, the lowest six individual nonlinear mode shapes are contrasted with the

corresponding linear mode shapes. It is worth pointing out that, since the lumped mass is located at the

beam midspan, the mode shapes are either symmetric or skew-symmetric. The mass location is a vibration

node for the even modes; therefore, the modal masses of such modes are not influenced by the lumped mass

whereas it affects the modal mass of the symmetric modes. This is evident comparing the nonlinear fre-

quency laws with those obtained for the beam without the lumped mass. For the odd modes (i.e., symmetric

mode shapes), the effect of the lumped mass is to reduce both the linear modal frequencies and their
nonlinear corrections. In fact, in Figs. 5 and 6, we note that the backbone of the first mode is very slightly

bent to the right and the difference between the nonlinear mode shape and the linear mode shape is not

discernible. On the other hand, the effects of the higher-order symmetric linear mode shapes onto the other

symmetric nonlinear mode shapes, such as the third and fifth modes, are evident in their more flexible

configurations (Fig. 6).

For the third sample beam (l ¼ 10 and x1 ¼ 0:25), the computed nonlinear frequency laws are reported

in Table 4 and a representation of them is given in Fig. 7. In this case, the modes are neither symmetric nor

skew-symmetric. Hence, ðCjk;DjkÞ 6¼ ð0; 0Þ; higher-order corrections come into play for both even and odd
modes. The comparison between the linear and the nonlinear mode shapes is pictured in Fig. 8. Here, it is to

be observed that, for this system, the lumped mass is located in one of the vibration nodes of the fourth

mode; therefore, the fourth individual nonlinear normal mode is not influenced by the mass as it can be

ascertained comparing its nonlinear frequency law with that obtained for the system without the lumped



Mode 1

Mode 6

Mode 4

Mode 2

Mode 5

Mode 3

Fig. 6. The lowest six linear normal modes (thin line) and the corresponding individual nonlinear normal modes (thick line) when

l ¼ 10 and x1 ¼ 0:5.

Fig. 5. Backbones of the lowest six modes and representative frequency–response curves when l ¼ 10 and x1 ¼ 0:5.
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mass and is a similar nonlinear normal mode. For this sample beam, a convergence study has also been
conducted to evaluate the effect of the modal truncation on the nonlinear normal modes. In particular, the

convergence of the series in Eq. (48) has been tested analyzing the behavior of the coefficients



Fig. 7. Lowest six backbones and representative frequency–response curves when l ¼ 10 and x1 ¼ 0:25.

Mode 1
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Mode 2

Mode 5

Mode 3

Fig. 8. The lowest six linear normal modes (thin line) and the corresponding individual nonlinear normal modes (thick line) when

l ¼ 10 and x1 ¼ 0:25.
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1=4ðCjk þDjkÞ for increasing mode number up to 15. The results are summarized in Table 5. Practically,
convergence is achieved with 10 linear modes for the lowest three NNM’s. At the same time, it is interesting

to evaluate the relative importance of the nonlinear corrections to the linear characteristics concerning both

the frequencies and the mode shapes. To this end, we computed the following quantities:



Table 5

Convergence of the coefficient 1=4ðCjk þDjkÞ in the individual nonlinear mode shapes

j Mode k ¼ 1 Mode k ¼ 2 Mode k ¼ 3 Mode k ¼ 5 Mode k ¼ 6

1 +0.00· 10þ00 +5.20· 10�03 )9.48· 10�04 )4.26· 10�04 2.18· 10�04

2 )2.67· 10�04 +0.00· 10þ00 +5.31 · 10�03 +2.70 · 10�03 )1.44· 10�03

3 +1.22· 10�05 )4.09· 10�03 +0.00 · 10þ00 )4.82· 10�03 +2.58· 10�03

4 )6.62· 10�20 +1.41· 10�16 +7.38 · 10�15 +5.86 · 10�14 +4.99· 10�15

5 +2.22· 10�06 )3.76· 10�04 )4.10· 10�04 +0.00 · 10þ00 +1.42· 10�02

6 )7.28· 10�07 +1.26· 10�04 )1.14· 10�03 )8.46· 10�03 +0.00· 10þ00

7 )1.83· 10�07 +3.27· 10�05 )2.50· 10�04 )1.30· 10�03 +3.55· 10�03

8 +4.29· 10�20 )3.12· 10�17 )2.30· 10�16 )3.98· 10�16 +8.97· 10�17

9 )1.09· 10�07 +2.01· 10�05 )1.52· 10�04 )2.48· 10�03 +9.78· 10�04

10 )5.23· 10�08 +9.73· 10�06 )7.42· 10�05 )9.04· 10�04 )7.29· 10�03

11 )1.91· 10�08 +3.61· 10�06 )2.79· 10�05 )3.13· 10�04 +6.51· 10�04

12 +2.08· 10�21 )1.10· 10�18 +1.44 · 10�17 )2.62· 10�17 )9.98· 10�19

13 )1.68· 10�08 +3.20· 10�06 )2.51· 10�05 )2.76· 10�04 +4.88· 10�04

14 +9.34· 10�09 )1.79· 10�06 +1.42 · 10�05 +1.56 · 10�04 )2.70· 10�04

15 +4.04· 10�09 )7.80· 10�07 +6.20 · 10�06 +6.86 · 10�05 )1.18· 10�04

Table 6

Percent variation of the frequencies and the nonlinear mode shapes

Mode k Dxk% DWk%

1 0.32 0.56

2 2.89 3.77

3 4.13 3.23

4 4.69 0.00

5 3.61 14.31

6 4.10 18.08

W. Lacarbonara, R. Camillacci / International Journal of Solids and Structures 41 (2004) 5565–5594 5585
Dxk% ¼ xk � x0k

x0k

1

ðakkÞ2
% ¼ � akkk

x0kk
2
% ð104Þ
and
jDWkj% ¼ max
Wk � Uk

Uk

����
���� 1

ðakkÞ2
% ¼ max

PN
j¼1;j 6¼k Cjk þDjk

� �
Uj

4Uk

�����
����� 1k2 % ð105Þ
in x 2 ½0; 1�. These quantities, reported in Table 6, allow to estimate the relative nonlinear deviation from

the linear characteristics; to make the results general, they have been divided by the square of the beam

slenderness and oscillation amplitude. For example, for the lowest four modes, Dxk% ¼ Oð1Þ and

jDWkj% ¼ Oð1Þ; consequently, the actual frequency and mode shape variations are OððakkÞ2Þ. Hence,

considering, e.g., ak ¼ 0:05 and k ¼ 30, the percent variation is Oð1Þ.

5.2. Resonant nonlinear normal modes

A three-to-one internal resonance between the lowest two modes, occurring in a beam carrying a large

mass whose center is in a slight offset with respect to the beam supports (l ¼ 10 and x1 ¼ 0:0637), has been
investigated. Variation of the amplitude ratio c with the normalized detuning r� has been evaluated

according to (71), while the stability of the solutions has been ascertained using (76). For beams with
k ¼ 30, the calculated curve is shown in Fig. 9. Inspecting this figure, it is to be pointed out that, depending
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Fig. 9. Variation of the amplitude ratio c with the normalized resonance detuning r� when l ¼ 10 and x1 ¼ 0:0637.
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on the range of the detuning parameter r�, the beam may possess (i) one stable resonant NNM, (ii) one

unstable and two stable resonant NNM’s and (iii) three stable resonant NNM’s. The computed range of c
where unstable and stable NNM’s coexist is [)5.7865, 0.091]. The number of nonlinear normal modes is
greater than the number of linear normal modes involved in the resonance in agreement with the results of

Nayfeh et al. (1996), King and Vakakis (1996), Nayfeh et al. (1999), and Lacarbonara et al. (2003). It is also

to be noted that, since the involved frequencies are Oð10Þ (i.e., x02 ¼ 21:03), the detuning parameter r must

be Oð1Þ as, in fact, this was assumed in the analysis; therefore, taking into account that r� ¼ r=a2n ¼ Oð104Þ
as inferred from Fig. 9, the amplitude an must be Oð10�2Þ. This is consistent with the considered range of

variation of the oscillation amplitudes in the backbones of the individual NNM’s (Figs. 3, 5, and 7).

According to (80) and (81), the curves x1 � c and x2 � c have been computed and pictured in Fig. 10.

Considering, for example, the detuning r� ¼ 2� 104, then the beam exhibits three stable resonant NNM’s
marked 1, 2, and 3 in Figs. 9 and 10. It is interesting to appreciate the difference in the nonlinear frequencies

associated with the coexisting NNM’s, especially between those marked 2 and 3. Furthermore, it is of

interest to evaluate the different signatures of the coexisting stable NNM’s in the corresponding mode

shapes. It is important, however, to preliminarily assess the convergence properties of the nonlinear

coefficients amj and anj in Eq. (93). Considering the lowest 15 modes, the obtained convergence results are

reported in Table 7. The convergence is practically attained with six modes; we further observe that amj
converges faster than anj does. We also note that, for the NNM denoted with 3, the nonlinear coefficient is

Oð103Þ whereas the relative amplitude c, determining the amplitude of the nonlinear mode at first order, is
Oð10Þ. However, because the nonlinear correction at second order depends on the square of an, when the

amplitude an is Oð10�2Þ, the nonlinear correction becomes Oð10�1Þ. This is consistent with the performed

perturbation analysis.

Retaining the lowest 10 modes, the calculated resonant nonlinear mode shapes are shown with thick

solid lines in Figs. 11(b)–(d) whereas the thin solid lines indicate the interacting first and second linear

normal modes in Figs. 11(a)–(d). In the resonant nonlinear mode shapes, the contribution of the higher

modes, namely the third, fourth, and fifth linear modes, is clear. This is particularly evident in the NNM in

Fig. 11(d).
Similar features have been found in the resonant NNM’s arising from other three-to-one internal res-

onances although the results are not reported for sake of conciseness. Finally, it is pointed out that there are
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Fig. 10. Variation of the frequencies x1 and x2 with the amplitude ratio c when l ¼ 10 and a ¼ 0:005.

Table 7

Convergence of the coefficients in the resonant nonlinear mode shapes

Mode j amj anj ðc3amj þ anjÞ
c ¼ 7:57 c ¼ �11:74 c ¼ �19:15

3 +3.90· 10�1 )5.39· 10�1 +1.69 · 10þ2 )6.47· 10þ2 )2.65· 10þ3

4 +6.04· 10�2 +7.22· 10�1 +2.70 · 10þ1 )9.94· 10þ1 )4.09· 10þ2

5 +1.53· 10�2 +1.86· 10�1 +6.84 · 10þ0 )2.52· 10þ1 )1.04· 10þ2

6 )5.16· 10�3 )6.53· 10�2 )2.31· 10þ0 +8.49· 10þ0 +3.49· 10þ1

7 +2.08· 10�3 +2.72· 10�2 +9.33 · 10�1 )3.43· 10þ0 )1.41· 10þ1

8 )9.55· 10�4 )1.28· 10�2 )4.28· 10�1 +1.57· 10þ0 +6.47· 10þ0

9 +4.79· 10�4 +6.51· 10�3 +2.15 · 10�1 )7.88· 10�1 )3.24· 10þ0

10 )2.56· 10�4 )3.53· 10�3 )1.15· 10�1 +4.21· 10�1 +1.73· 10þ0

11 +1.43· 10�4 +1.99· 10�3 +6.41 · 10�2 )2.35· 10�1 )9.68· 10�1

12 )8.17· 10�5 )1.15· 10�3 )3.66· 10�2 +1.34· 10�1 +5.53· 10�1

13 )4.63· 10�5 )6.54· 10�4 )2.08· 10�2 +7.61· 10�2 +3.13· 10�1

14 +2.43· 10�5 +3.46· 10�4 +1.09 · 10�2 )4.00· 10�2 )1.65· 10�1

15 )9.08· 10�6 )1.30· 10�4 )4.08· 10�3 +1.49· 10�2 +6.15· 10�2
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cases where, although the linear frequencies are commensurable with a 3:1 integer ratio, the interaction
does not actually occur. It is, for instance, the last case in Table 1, where x07 ¼ 3x04 ¼ 473:74; in fact, the

orthogonality condition uT7 b444 ¼ 0 is satisfied and the two modes happen to be nonresonant.
6. Conclusions

In this paper, an analytical construction of the nonlinear normal modes of general multi-degree-of-

freedom self-adjoint structural systems with weak cubic geometric and inertia nonlinearities has been

pursued. The employed asymptotic approach, based on the method of multiple scales, attempts to gen-

eralize previous studies in that it systematically leads to the closed-form invariant manifolds and the
nonlinear mode shapes (nonlinear eigenvectors) as an extension of the linear counterparts. These modes



Fig. 11. (a) The lowest two linear mode shapes when x1 ¼ 0:0637 and l ¼ 10 and (b)–(d) the resonant nonlinear mode shapes (thick

lines) superimposed on their first-order parts (thin lines) corresponding to the solutions marked 1 (b), 2 (c), and 3 (d) in Figs. 9 and 10.
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have been calculated away from internal resonances––individual nonlinear normal modes––and in their

vicinity––resonant nonlinear normal modes. The employed operator notation makes the results general and
the computational implementation effective also with large systems.

The motivation for employing the asymptotic approach lies in the fact that the closed-form NNM’s can

be used to investigate general properties of certain classes of structural systems undergoing moderately

large vibration amplitudes. Along these lines, closed-form conditions were determined for systems pos-

sessing similar normal modes. Further, the obtained closed-form NNM’s are amenable to be exploited for

nonlinear modal-type analyses of general self-adjoint structural systems with many degrees of freedom.

To corroborate the presented theoretical results, an illustrative example has been discussed, a hinged–

hinged uniform elastic beam carrying a lumped mass. Depending on the lumped mass relative to the beam
mass and on its location along the beam, different classes of individual and resonant NNM’s have been

found. The differences can be remarkable as in the case when the mass is at the midspan with respect to

the case when it is in some other locations. While with the mass at the midspan, the NNM’s preserve

the symmetric and skew-symmetric nature of the linear normal modes and the symmetric NNM’s only

are affected by higher-order modal contributions, in other mass locations along the span, the modes are

hybrid and are always affected by the nonlinear stretching effect activating a funicular load-carrying

mechanism. In addition, the general convergence properties of the nonlinear mode shapes have been dis-

cussed. The results also indicate that different reduced-order models must be knowledgeably constructed
using the obtained NNM’s depending on the inertial-geometric features of the considered beam as in more

general structures.
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Appendix A

A.1. Higher-order functions

Substituting (62) and (63) into (51) and (52), and equating the coefficients of like harmonic terms to 0,

the following set of 16 algebraic problems is obtained:
x0mz1 � ~w1 ¼
1

2x0m
uTmRmnum ðA:1Þ

�x0m~w1 þ Kz1 ¼ �1
2
uTmRmnum þ Rmn ðA:2Þ

x0mz3 � ~w3 ¼
1

2x0m
Cmmmum ðA:3Þ

�x0m~w3 þ Kz3 ¼ �1
2
Cmmmum þ ammm ðA:4Þ

ðx0n � 2x0mÞz5 � ~w5 ¼
1

2x0m
uTmSmnum ðA:5Þ

�ðx0n � 2x0mÞ~w5Kz5 ¼ �1
2
uTmSmnum þ Smn ðA:6Þ

x0nz2 � ~w2 ¼
1

2x0n
uTnRnmun ðA:7Þ

�x0n~w2 þ Kz2 ¼ �1
2
uTnRnmun þ Rnm ðA:8Þ

x0nz4 � ~w4 ¼
1

2x0n
Cnnnun ðA:9Þ

�x0n~w4 þ Kz4 ¼ �1
2
Cnnnun þ annn ðA:10Þ

3x0mz7 � ~w7 ¼
1

2x0n
uTn bmmmun ðA:11Þ

�3x0m~w7 þ Kz7 ¼ �1
2
uTn bmmmun þ bmmm ðA:12Þ

ð2x0n � x0mÞz6 � ~w6 ¼ 0 ðA:13Þ

�ð2x0n � x0mÞ~w6 þ Kz6 ¼ Snm ðA:14Þ

3x0nz8 � ~w8 ¼ 0 ðA:15Þ

�3x0n~w8 þ Kz8 ¼ bnnn ðA:16Þ
The solutions of (A.1)–(A.16) are
z1 ¼
1

4x2
0m

ðuTmRmnÞum þ
XN

j¼1;j 6¼m

uTj Rmn

x2
0j � x2

0m

uj ðA:17Þ
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~w1 ¼ � 1

4x0m
ðuTmRmnÞum þ x0m

XN
j¼1;j 6¼m

uTj Rmn

x2
0j � x2

0m

uj ðA:18Þ

z2 ¼
1

4x2
0n

ðuTnRnmÞun þ
XN

j¼1;j 6¼n

uTj Rnm

x2
0j � x2

0n

uj ðA:19Þ

~w2 ¼ � 1

4x0n
ðuTnRnmÞun þ x0n

XN
j¼1;j 6¼n

uTj Rnm

x2
0j � x2

0n

uj ðA:20Þ

z3 ¼
1

4x2
0m

Cmmmum þ
XN

j¼1;j 6¼m

uTj ammm

x2
0j � x2

0m

uj ðA:21Þ

~w3 ¼ � 1

4x0m
Cmmmum þ x0m

XN
j¼1;j 6¼m

uTj ammm

x2
0j � x2

0m

uj ðA:22Þ

z4 ¼
1

4x2
0n

Cnnnun þ
XN

j¼1;j 6¼n

uTj annn

x2
0j � x2

0n

uj ðA:23Þ

~w4 ¼ � 1

4x0n
Cnnnun þ x0n

XN
j¼1;j 6¼n

uTj annn

x2
0j � x2

0n

uj ðA:24Þ

z5 ¼
1

4x2
0m

ðuTmSmnÞum þ
XN

j¼1;j 6¼m

uTj Smn

x2
0j � x2

0m

uj ðA:25Þ

~w5 ¼ � 1

4x0m
ðuTmSmnÞum þ x0m

XN
j¼1;j 6¼m

uTj Smn

x2
0j � x2

0m

uj ðA:26Þ

z6 ¼
XN
j¼1

uTj Snm

x2
0j � 25x2

0m

uj ðA:27Þ

~w6 ¼ ð2x0n � x0mÞ
XN
j¼1

uTj Snm

x2
0j � 25x2

0m

uj ðA:28Þ

z7 ¼
1

4x2
0m

ðuTn bmmmÞun þ
XN

j¼1;j 6¼n

uTj bmmm

x2
0j � x2

0n

uj ðA:29Þ

~w7 ¼ � 1

4x0m
ðuTn bmmmÞun þ x0m

XN
j¼1;j 6¼n

uTj bmmm

x2
0j � x2

0n

uj ðA:30Þ
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z8 ¼
XN
j¼1

uTj bnnn

x2
0j � 9x2

0n

uj ðA:31Þ

~w8 ¼ 3x0n

XN
j¼1

uTj bnnn

x2
0j � 9x2

0n

uj ðA:32Þ
A.2. Coefficients appearing in the invariant manifolds

Substituting Eqs. (A.17)–(A.32) into (82) and (83), the coefficients of (86) and (87) can be expressed as
r1j ¼
uTj Rmn

4ðx2
0j � x2

0mÞ
ðA:33Þ

r2j ¼
uTj Rnm

4ðx2
0j � x2

0nÞ
ðA:34Þ

r3j ¼
uTj ammm

4ðx2
0j � x2

0mÞ
ðA:35Þ

r4j ¼
uTj annn

4ðx2
0j � x2

0nÞ
ðA:36Þ

r5j ¼
uTj Smn

4ðx2
0j � x2

0mÞ
ðA:37Þ

r6j ¼
uTj Snm

4ðx2
0j � 25x2

0mÞ
ðA:38Þ

r7j ¼
uTj bmmm

4ðx2
0j � x2

0nÞ
ðA:39Þ

r8j ¼
uTj bnnn

4ðx2
0j � 9x2

0nÞ
ðA:40Þ

s1j ¼ �x0m

uTj Rmn

4ðx2
0j � x2

0mÞ
ðA:41Þ

s2j ¼ �x0n

uTj Rnm

4ðx2
0j � x2

0nÞ
ðA:42Þ

s3j ¼ �x0m

uTj ammm

4ðx2
0j � x2

0mÞ
ðA:43Þ
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s4j ¼ �x0n

uTj annn

4ðx2
0j � x2

0nÞ
ðA:44Þ

s5j ¼ �x0m

uTj Smn

4ðx2
0j � x2

0mÞ
ðA:45Þ

s6j ¼ �5x0m

uTj Snm

4ðx2
0j � 25x2

0mÞ
ðA:46Þ

s7j ¼ �x0m

uTj bmmm

4ðx2
0j � x2

0nÞ
ðA:47Þ

s8j ¼ �3x0n

uTj bnnn

4ðx2
0j � 9x2

0nÞ
ðA:48Þ
The coefficients in Eqs. (88) and (89) are
a1j ¼
r3j � 3r7j

x2
0m

ðA:49Þ

a2j ¼
2ðr2j þ 2r5jÞ

x0mx0n
ðA:50Þ

a3j ¼
2r1j
x2

0n

ðA:51Þ

amj ¼ r3j þ r7j ðA:52Þ

a5j ¼
2r2j
x2

0m

ðA:53Þ

a6j ¼
2ðr1j þ 2r6jÞ

x0mx0n
ðA:54Þ

a7j ¼
r4j � 3r8j

x2
0n

ðA:55Þ

anj ¼ r4j þ r8j ðA:56Þ

bmj ¼
s7j � s3j
x3

0m

ðA:57Þ

b2j ¼ � 2s2j
x2

0mx0n
ðA:58Þ

b3j ¼ � 2s1j
x0mx2

0n

ðA:59Þ
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bnj ¼
s8j � s4j
x3

0n

ðA:60Þ
b5j ¼ � s3j þ 3s7j
x0m

ðA:61Þ
b6j ¼
2ðs2j þ 2s5jÞ

x0m
ðA:62Þ
b7j ¼
2ðs1j � 2s6jÞ

x0n
ðA:63Þ
b8j ¼ � s4j þ 3s8j
x0n

ðA:64Þ
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